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CHAPTER ONE

INTRODUCTION

The scattering properties associated with surfaces such as those of the oceans, the

moon and planets, and other natural targets have been of interest to researchers for many

years t 1-201. Since these surfaces are not deterministic, they must be described by their

statistics. Most efforts to understand scatteriwg from them have therefore been based on a

statistical approach. Some data has also been acquired using numerical simulation

techniques [1,2]. A number of experiments have also been carried out involving the

measurement of natural terrains [3]. In addition, some studies of man-made surface targets

have been reported [4-71. While this data has allowed a better understanding of the

phenomenon, many questions cannot be answered until controlled measurements on target

surfaces in which specific statistical parameters can be obtained. Previous measurements of

man-made surfaces have been limited by measurement of the parameters 3f interest after

generation of the surface targets, with little or no a priori control of those parameters.

Researchers have accomplished the generation of numerical surfaces, both two

dimensional [ 1,2], and more recently, in three dimensions, through the technique of digital

filtering. Applying discrete Fourier analysis, it can b-- shown that it is possible to generate a

filter which, when applied to a matrix of random deviates with the desired statistical

probability density function, can smooth the surface to very closely approximate the one

desired. For example, a set of Gaussian distributed random deviates can be filtered to

generate a surface with a Gaussian distribution of surface heights and a predetermined

correlation length. This technique works well for analysis under approaches such as the

I
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moment method [8,21] where integral equations are solved using piecewise approximation

and iterative techniques. This filtering technique can likewise be applied toward the

generation of a physical scatterometer target using a numerically controlled mill. The

process uses the same digital filtering technique to generate the target surface , but instead of

using the generated surface in a numerical simulation, the data is converted to control

information for a computer controlled mill.

The desired surface and the corresponding mill control commands are created

through the use of computer programs. Additionally, the numerical surface statistics are

checked to insure compliance with the desired (input) statistics. The surface is generated

identically to the one used in the numerical simulation. However in numerical simulations,

the extent of the target surface is only that necessary to allow sufficient sampling points to

insure good statistical agreement with the input. In a physical target, the final product is

continuous, indicating an infinity of sample points. Actually, the milling process is

discrete, but there is a requirement for much larger number of sample points. Once the

numerical surface is generated, a large number of additional points can be located using any

of several interpolating techniques. While the actual requirement for points will be target

and machine dependent, the better the interpolating routine, the more likely success in

achieving agreement with input statistics. One good method for interpolating additional

points is that known as bi-cubic surface patch. This method uses the values of the known

points, the derivatives in each direction at the given points, and the twist vector at each

given point to provide a surface that is continuous in both directions, in both the first and

second derivative, throughout the given area. Analysis shows that the surface statistics of

interest change very little when this method is used.

Once the surface is determined at the required spacing, the points generated must be

translated into instructions for milling. There are a number of high level languages that have
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been developed for such translations, most notably the Fortran compatible language known

as APT, and its extensions. Again, machine dependence plays an important role in

determining both the language and its implementation. Once the instructions are coded, they

must be processed. If all instructions have been correctly coded, the milling process itself

is automatic.

While the primary purpose of this work is to present the method developed to

generate a Gaussian distributed random surface on a Spindle-Wizard Model I CNC mill, it

is hoped that the process is sufficiently generic that other surfaces can be developed and

generated on other numerically controlled machines. To this end, the theory is outlined and

implementation is described in some detail. Chapter 2 presents the development of

scattering theory as well as some target generation techniques previously employed.

Chapters 3 and 4 present the development of the numerical and physical surfaces,

respectively. Chapter 5 is a discussion of the results of measurements of the numerical and

physical targets. Recommendations for future study are included in the concluding remarks

of Chapter 6. Listings of the programs and their use are included in the appendices along

with tables of measured data.



CHAPTER TWO

BACKGROUND

Electromagnetic scattering from random rough surfaces has received a vast

amount of study in the last thirty years due to the applicability to many natural terrains. The

complexity of most terrains makes such surfaces impossible to describe analytically and

thus requires them to be described through statistics. The study of scattering from them has

been necessarily based on those statistics. As theories have advanced, practical applications

of the analysis of radar returns from rough surfaces have become widespread. Studies of

scattering from such surfaces as the ocean are numerous [5,9-11], as well as studies of

earth-land terrains [8,9], and even other planets [12-15]. Figure 2-1 is representative of

one type of surface for which a great deal of study has been done, a surface with

Figure 2-1. Typical Surface with Normally Distributed Heights.

normally distributed surface heights. This type of surface is of interest because it

4
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approximates many natural terrains and is among the easiest to handle analytically [9].

A comprehensive study of the scattering from rough surfaces would be

extensive. Some of the more important theories advanced have been based on previous

work in acoustical scattering from similar surfaces. The selection of a scattering model is

usually based on the agreement of surface statistics with the assumptions necessary for

solutions using the model [8]. Fung [8] lists several methods for solution and characterizes

them by the major assumptions associated with each method. The statistical measures of

interest are generally related to surface height (density functions as well as rms heights),

slope distributions, radii of curvature and the surface height autocorrelation and

autocovariance functions [9]. Analysis of the scatter problem is often based on the Kirchoff

approximation, that is that the incident field is "reflected at every point as though an infinite

plane wave were incident upon the infinite tangent plane" [151. This assumption leads to

the Stratton-Chu [ 161 formulation.

A~ k %

SS(P) =-Jks R n n n dS (
(2-I

where

AAn s = unit vector in scatter direction
A

n = unit vector normal to surface

k, = wavenumber of the medium (2-2)

TIS = intrinsic impedance

R = range from scatterer to P

and the far zone modification of Silver [22] has been applied. A time variation of ej1 )t is
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implied as well. The geometry is indicated in figure 2-2. Generation of a solution

involves determination of the tangential fields which introduces the statistical nature of the

z

[ei

x

Figure 2-2. Rough surface scattering geometry.

surface in that the surface normals will have a distribution related to the surface statistics.

While the majority of studies have concentrated on Gaussian surfaces, recent investigations

have included others [17-201.

The Kirchoff formulation is based on planar approximation in a local region, so

that horizontal scale roughness must be large compared to the wavelength of the incident

field. This implies that the radius of curvature, on the average, must be large compared to

the wavelength. Fung has shown these requirements mathematically to be [101

ki 1 > 6
2 (2-3)• 1 > 2.76aX

mI
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where k, is the wavenumber, I is the surface correlation length, o is the standard deviation

of the surface heights, and X is the electromagnetic wavelength.

When the horizontal roughness (correlation length) is small in relation to the

incident field wavelength and the standard deviation of heights is large, that is when the

requirement for average radius of curvature larger than the incident field wavelength is not

met, the Kirchoff method must be abandoned. Another method often used in these

configurations is the small perturbation method. This approach requires a standard

deviation of surface heights on the order of .05X or less [9]. Also, the average slope of the

surface must be about the same magnitude as the product of the wavenumber and the

surface height standard deviation. Again from Fung [9]

ko c< 0.3

L2 (Ti< 0.3 (2-4)

1

In addition to the two extreme cases which meet the statistical requirements of the

Kirchoff and small perturbation methods, many surfaces include a variety of roughness

scales. Some can be modeled as a collection of two scales of roughness, one imposed upon

another. The method of solution is to consider the large scale to be dominant at low

incidence angles [111 and to consider the small scale roughness as being present on a tilted

plane for larger incidence angles of illumination [9]. One of the motivations for generation

of a scatterometer target of the type discussed here is to verify the limits of applicability of

each solution method.

Hagfors [13] has shown the statistical relationship between surface height

deviations and the surface slopes as well as their effects on the surface scattering, especially
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as it applies to depolarized returns. The slope effects are included by noting the relationship

to the surface differential as ds = dx/cos, where ax is the local tangential angle. The local

incident angle can then be expressed as a function of t = tant = dh/dx [15].

(cos t+t sin a) (2-5)

coi + lt 2

sin = (sinx+ t cosa) (2-6)
,rl+t

2

The final form of the relationship is dependent on the surface statistics. Hagfors [ 141 gives

an extensive analysis of the relationship for Gaussian height distributions. Beckman and

Spizzichino [191 and Boyd and Deavenport [201 provide a similar analysis for

non-Gaussian distributions.

Testing of the scatter theories has generally been performed by 1) numerical

simulations [1,21, 2) measurement of natural targets [3,91 and 3) measurements of

man-made targets [4-6]. The generation of man-made rough surface targets has however

been limited. An early study by Moore and Parkins [61 describes the generation of two

rough surfaces for acoustic scattering. One was a grout-smoothed sand surface. The other

was a mild steel sheet that had been repeatedly struck with a hammer. The statistics of both

surfaces were measured after generation. The authors reported approximate agreement

between measured statistics and those of a Gaussian surface. Horton, Mitchell and Barnard

[41 have also reported rough surface target generation. They used a corrugated

pressure-release material to study acoustical scattering. Targets generated in their study

included a surface whose cross section was a sinusoid and later a random rough surface.

The random surface was taken from an aeromagnetic map of a 32 mile x 32 mile section of
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the Canadian Shield, scaled to 1 inch per mile. The statistics of this surface were again

measured a posteriori to generation, although the autocovariance functions of the contour

maps were studied before construction [4]. Welton, Frey and Moore [5] used this surface

to generate three surfaces which were identical except for scaling, along with two others

similarly constructed. Statistical measures of the surfaces, determined after generation in all

cases, indicated approximate Gaussian height distributions as well as approximately

isotropic autocovariances.

The intent of this study is to provide a method for constructing surfaces such as

those used in the above tests, but to allow the statistics of these surfaces to be determined a

priori to the construction, and in fact, to construct surfaces with desired statistics so that

theory, simulation, and experiment can be compared directly. Construction of surfaces with

specified statistics will allow the various aspects of investigation into the scattering

phenomenon to be unified. Using such targets will provide a deeper understanding of the

interaction of electromagnetic fields and randomly rough surfaces. The process for

generating surfaces with specified surface statistics is presented in the following chapters.

Chapter 3 provides the theory associated with generation of the surface numerically through

generation of a sampled surface at a number of points and determining the analytic surface

that passes through those points so that physical construction can be performed. The

generation of a sampled two-dimensional surface [ 1,2] is extended to three-dimensions and

the method of bi-cubic surface patching is performed to create a machineable surface.



CHAPTER THREE

COMPUTER GENERATION OF THE SURFACE

This chapter provides the theoretical understanding and the mathematical process

for numerically generating a three dimensional surface whose statistics agree with those

input. The method involves two major steps, basic generation of the surface and

interpolation for additional information. The surface generation techniques are those used to

develop a scatterometer target using numerical control machinery.

Gaussian Random Surface

The numerical generation of a Gaussian random surface begins with the

generation of a matrix of normal random deviates. A number of methods exist for

performing this task. Muller [231 and Naylor [24] have provided studies comparing some

of these approaches, including the Inverse, Central Limit, Rejection, and Direct approaches.

Based on these studies and the requirements of the surface generation process, namely a

large number of deviates with a good degree of statistical accuracy, the Direct Approach

appears optimum. The Direct Approach provides a transformation from uniform deviates to

normal deviates that is exact, and with accurate function subroutines it can be quite precise

[23].

The Direct Approach, as developed by Box and Muller [25], follows. It is

assumed that a method exists which provides uniformly distributed independent random

deviates in the interval [0, 11. The joint probability of two independent random variables z,

and z2 is defined by equation (3-1).

10
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p =P{z1 <z < z1+Az, z2< Z2 !5 z2+ Az 2) (3-1)

Furthermore, if these random variables are normally distributed this probability is [26]

p ) dz(3-2)

or

I exp( (3-3)
P= 72 )dz, d(z2

Pearson [27] has shown that the transformation to polar coordinates in the (z1,z2) plane

reduces this probability to equation (3-4).

p = exp (Z ) rdrd8 (3-4)

where the area element has been written as rdrdO. If two independent variables xi and x2

are chosen, using the above mentioned method, from a uniform distribution on [0,1], then

let

x, = exp -- )(3-5)
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so that the value of r is given by

r- _21n(x,) (3-6)

Using the definition of a normally distributed random variable,

P(r< r!<r+Ar} = exp(r) rdr (3-7)

and an inverse transformation to rectangular coordinates,

ZI= rcosO

z2 =rsinO (3-8)

0 =2 x2

the variables z1 and z2 can be directly calculated from equation (3-9).

z= 1-21n( ) cos(2x 2 )

z2= --i sin(2 x 2)

Now z, and z2 are independent, normally distributed random variables with unit variance

and zero mean. It is a simple matter to transform them to other normal distributions by

making use of the generalized formula.
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I exp( -(Z-z(3-10)
ftjz) = "--2 ) (-0

where crz and 'n z are the desired standard deviation and mean. To illustrate the

transformation, let w be normally distributed with standard deviation o w and mean 7i1. Let

y represent the desired distribution, so that the desired standard deviation and mean are ay

and ily respectively. Then from Pearson [271

y= (--L) (w- Iw)+ly. (3-11)
w

While other methods exist for generating normally random deviates, this method provides

excellent results with a simple algorithm, little memory, and within reasonable time

constraints. Furthermore, by using a constant seed in the call to generate uniform deviates,

the vector of normal random numbers can be quickly reproduced, allowing comparisons of

tests without the necessity of storing a large number of values. Results of the

implementation of this approach are presented in Chapter 5.

After generating the matrix of random numbers it is necessary to force a

correlation function on them. The method used is that or Naylor [241, as outlined by Axline

and Fung [1), Fung and Chen [2], and Levin [28], but applied in two dimensions. Using a

sequence of normal random deviates generated as above, a method based on the concept of

digital filtering is applied. If o(m) represents the desired correlation function and its

z-transform is written 4(z), then by definition:
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O(z) =X0(m)zi (3-12)

z = exp{jo) (3-13)

For clarity, let the normally distributed deviates be normalized to mean zero and unity

variance and be written as r(n). Finally, write the sequence of correlated deviates as c(n).

Since the process is based on digital filtering techniques, assume a filter exists whose

impulse response is h(n). Barker [291 has shown that

I(z) = H(z)H(z-1 ) (3-14)

where

H(z) =yh(n)i n' (3-15)
n=O

The output of the filter with the normal sequence input is then given by equation (3-16).

M
c(n) = Yh(m)r(n-m) (3-16)

m=-M

Using this process it is theoretically possible to generate a sequence of deviates with any

definable sampled correlation function desired, however, calculation of the filter response

requires calculation of the covariance matrix for the product summation beyond n [281.
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For large sequences, as used for surface generation, this process becomes impractically

complex. However, for two certain correlation functions a closed form of h(m) can be

determined analytically and then sampled [24]. These are the linear and exponential

autocorrelations. Noting that the expected value of the product of c(n) and c(n+j) gives the

discrete autocorrelation.

Etc(n)c(n+j)) Yh(m)r(n-m)-h(k)r(n-k+j) (3-17)

m k

so

E(c(n)c(n+j)) = h(m)h(k){r(n-m)r(n-k+j)) (3-18)
m k

But the input sequence is of uncorrelated deviates with identical variance so that

E (r(n-m)r(n-k+j)) ={0, m *k + j -9

0, m=k+j (3-19)

and the autocorrelation is seen to be the convolution of the filter with itself.

E{c(n)c(n+j)) = E h(k)h(k+j) (3-20)
k

Using the notation S{f(x)} to indicate the Fourier transform of f(x), it is seen that
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{} =. {h}. {h} = (3 {h}) 2  (3-21)

so that

h=S r o (3-22)

Use of a two-dimensional filter follows exactly. Let the desired correlation o be Gaussian

with a spectrum p. The correlation function can be written as

0 =exp{ I [ ] 2l (3-23)

Then p can be found from the Fourier transform, as in Goodman[30].

(1 2 f 2 + 2=y c expI . 8 (3-24)

If the samples of the filter h are designated as weights Wij, they can be found from

equations (3-24) and (3-22).

2 ep.Eix/2) [ -j y/2)1-1
W - 1. -2 [ (i x 1 -2 -y/2)1I(3-25)

Generation of surfaces with other statistics can be performed in a similar fashion.

If a closed form of the correlation function's spectrum is not available it may be generated

numerically. An appropriate sampling period must be determined. Additionally, methods
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exist for generating non-Gaussian deviates as the basis matrix [24]. Physical target

generation is independent of the method used to generate the numerical definition of the

surface. The use of the bi-cubic surface patch, outlined in the next section, may or may not

provide results as good for other surfaces.

Bi-cubic Surface Patch

The method of generating smooth curves through given points using a cubic

spline is well known. Other fits are possible and a number of studies are available

comparing them. Their extensions into surface generation is also well studied [31-37].

While many provide accurate results, the extension of cubic splining to three dimensional

surface fitting provides a method for insuring the surface is smooth and continuous. The

comparison of surfaces generated by the methods of the previous section and those

generated from bi-cubic surface patching a sparse set of points from those surfaces show

remarkable agreement. Quantitative comparisons are made in Chapter 5.

The bi-cubic surface patch method originally developed by Coons [38] is based

on piecewise fitting a cubic surface through all the given points as well as insuring

smoothness by matching the slopes and twist vectors across boundaries. Once the cubic

surface is determined, interpolation can be performed to any degree desired, i.e. the cubic

surface is continuous throughout the region. The accuracy of the fit is dependent on the

accuracy of the given values of points, slopes and twists [40]. Numerical differentiation

methods such as centered differencing or the geometrical condition process of Akima 1321

may be used if the slopes and twists are unknown. The surface patch is performed on sets

of four points as shown in figure 3-1. Here the assumption has been made that the comer

values of the block have been parametized to (0,1) as u and w. The values of the comer

points are written using the shorthand notation of Pressman 140], V(a,b) = Vab. The slopes
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V(w,l ' l u

V(Ou) (w,O)

Figure 3-1. Coons' Surface Patch [401.

are also written in shorthand as Vabu = aV(a,b)/Du, and the twist vectors as Vabuw

a2V(a,b)/auaw. Note that the continuity of slopes and curvatures is assured if the

interpolating function is forced to maintain these at the boundaries, so that it suffices to

analyze one arbitrary patch among the many that would make up a full surface target. Look

first at the curve defined by V(O,u). Since the equation is cubic, the general form

V(0,u) = C11 + u C12 + u2 C13 + u3 C14 (3-26)

may be used. The unknown coefficients can be determined by use of the boundary

conditions.
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V(o,o) = v00

V(O,1) = Vol

aV(O,O) (3-27)
= voouf

av(0,1)
" =- Olu

Solving equation (3-26) using these conditions gives equations (3-28).

CI, = Vo

qa2 -- V°, (3-28)

C13 = 3Vo- 3Vo- 2Vo- Volu

q4 = 2Vo- 2Vol+ V + Vol,

The use of a single curve segment must now be generalized to a single surface segment, or

surface patch. This is done by first finding parametized equations for two related curves,

say V(O,u) and V(l,u), then using these curves to find intermediate points at w which serve

as the endpoints for a cross curve of the type V(w,u), where w is held constant but not

necessarily as zero or one. The general intermediate curve then defines a parametric

surface. Ferguson [34] has shown that the choice of initial curves does not affect the final

surface patch defined. The process leads to the parametric equation (3-29) from Press (35].

4 4z(x,y)-- _ C, w i4 uj1  (3-29)

i =lj 
=1

Parametric variables u and w can be obtained from equation (3-30)
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(X- XI)
U (X2- x) (3-30)

U= (Y- Yi)

(Y2- Y)

where x and y are the coordinates of the point internal to the patch at which an interpolated

surface height is desired and subscripts indicate the corner points after parametizing as

shown in figure 3-2. There are now 16 distinct coefficients to be determined, and it is

0 0

y

x -*

X ..

Figure 3-2. Points on the corners of a single surface patch.

possible to determine them generally as algebraic functions of the boundary conditions and

corner point heights. At least two methods have been used for determining these values.

Ferguson [341 simply forced continuity of slopes across the boundaries. Coons [381

defined the twist vector to include the effects of the curvature as well as slopes, thus

creating a smoother surface. The two methods are equivalent if the second derivatives are

assumed equal at all points within a patch and zero at patch boundaries [341. The

development follows Coons' method as outlined by Pressman [40]. Writing the parametric

equation in matrix form gives equation (3-31).
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V(w,u) = [W][M][BI[M] [U (3-31)

where the following vectors are defined.

[U=[u 3  u2 u (3-32)

[w]=[w 3  w 2 w 1]

The coefficients found in equation (3-28) generate the matrix [M] as follows. The process

is valid for any of the four boundary curves so define a general curve V(t).

V(t) = At3+ Bt2 +Ct + D (3-33)

Then, as in equation (3-27), boundary slope continuity is applied to determine the

coefficients.

V(0)1 0 0 01
V(I) I -- I[ m][c] (3-34)

V'(0)] 0 001 0

Inverting [M] gives [T
A 00 0 --

BI Cc, I I I I 1) (3-35)D ]F 3 2 1 0] 1v 1[DJ0] V~ICi~ LI- 00 0
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The [B] matrix of equation (3-31) is termed the blending matrix [38].

V Vo V. Vol.

[B] = o vl I (3-36)
V oVV V

VOOU 0~ V OW oUW oluw
VIo V,,. Vo V ,.W

Finally the constant (for any single patch) [S] matrix is found from [MI[BI[M]T, and is

equivalent to that of equation (3-37), which is easily implemented numerically to determine

the Cij's of equation (3-29).

C11 C 12 C 13 C 14 C2 1 C2 2 C 2 3 C2 4 C 3 1 32 C33 C34 C41 C4 C - ]

1 0 0 0 0 0 0 0 0 0 0 0 0 0 00 V

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 Vo1
-3 0 0 3 0 0 0 0-2 0 0-1 0 0 0 0 V1 o
2 0 0-2 0 0 0 0 1 0 0 1 0 0 0 0 V 1
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 V°
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 Vo
0 0 0 0-3 0 0 3 0 0 0 0-2 0 0-1 VO1u (3-37)
0 0 0 0 2 0 0-2 0 0 0 0 1 0 0 1 VIOu
-3 3 0 0 -2-1 0 0 0 0 0 0 0 0 00 Vl u
0 0 0 0 0 0 0 0-3 3 0 0-2-1 0 0 Voo
9-9 9-9 6 3-3-6 6-6-3 3 4 2 1 2
-6 6-6 6-4-2 2 4-3 3 3-3-2-1-1-2 V01w
2-2 0 0 1 1 0 0 0 0 0 0 0 0 0 0 Viow
0 0 0 0 0 0 0 0 2-2 0 0 1 1 0 0 V11w
-6 6-6 6-3-3 3 3-4 4 2-2-2 -2-1-1 Voouw
4-4 4-4 2 2-2-2 2-2-2 2 1 1 1 1 VOlw U

Voluw
Viluw
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After determining the coefficients for a given patch, any number of points may be quickly

found within the patch from equation (3-29). While it is possible to store these coefficients

along with those of all other patches, and thereby fully define the surface, the accompanying

complexity associated with generating the parametric variables becomes prohibitive for

realistic surface sizes. Instead, a number of points are calculated that insure adequate

definition for machining, as outlined in the following chapter. Also, it should be noted that

some method of determining the first and second derivatives at the given grid points is

required. Centered differencing is adequate for most patches but for the edges of the target

boundary patches, the slope will be undefined in at least one direction and the second

derivatives will not be defined at all. It is sufficient to set these unknown values to zero,

since any small change in the slope will be at or very near those edges and will not alter the

electromagnetic properties associated with the bulk of the target. Before measurements are

Figure 3-3. General curved surface defined by 9 planar patches.
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Figure 3-4. Same general surface as shown in figure 3-3 after bi-cubic surface patching.

made, it is likely that these edges will be modified, covered, or otherwise eliminated from

illumination by the incident electromagnetic wave during. Figures 3-3 and 3-4 indicate the

application of the bi-cubic surface patch to an arbitrary surface. The routine was applied to

an input surface shown in figure 3-3 and the surface generated is plotted as figure 3-4.

Here additional interpolation was performed to convert the 9 patches given to 900 patches.

Through the use of Fourier analysis, it has been shown that generation of a

sampled surface with specified statistics is possible. The surface is generated by

convoluting a set of random numbers with the inverse Fourier transform of the square root

of the spectrum of the desired correlation function [2]. This sampled surface can then be

extended to a continuous surface through the application of bi-cubic surface patching, which

matches the sample points, as well as the slopes and curvatures at each point, and

determines a double-cubic surface that matches these boundary conditions. Using the

aralytic sitrface, n smaller sampling interval can be used so that the surface to be machined
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is well defined and approaches that of a continuous surface. The method of converting the

numerical surface to a physical one is presented in Chapter 4.



CHAPTER FOUR

NUMERICAL CONTROL MILLING PROCESS

Since its inception in the early 1950's, numerical control has advanced rapidly.

Today the majority of machining takes place on numerically controlled machines. The

Electronics Industries Association defines numerical control as "a system in which actions

are controlled by the direct insertion of numerical data at some point. The systti must

automatically interpret at least some portion of this data" [39) The application of numerical

control to the specific problem of rough surface generation is discussed in this chapter. The

discussion includes general interfaces and techniques as well as the specific process used

for generating two test patches on the Spindle-Wizard Model I CNC Mill.

Initially, numerical control was investigated and developed to find an economical

manufacturing technique for accurately producing metal parts in relatively limited quantities.

While the difference between numerical control and automation was initially based on this

definition, the success of numerical control processes have somewhat clouded the

distinction. Automation is generally used for large quantity production of a part, but

numerical control today is almost as fast and accurate, and far more flexible. The original

intention of numerical control designers is ideally suited to target generation however, since

each target is likely to be unique. The success of numerical control has generated the

development of a large number of numerically controlled machines and control schemes.

The generation of scatterometer targets is best performed on a numerically controlled mill,

but any of a number of control schemes and specific machines are available to perform the

task.

26
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Generation of the surface numerically, described in Chapter 3, provides a set of

grid points (x and y coordinates) with an associated surface height, (z-z(x,y)), as well as

the slope in each coordinate direction at each point (ozf/x, and Dz/ay) and the twist vector

(02zaxay). While it has been shown possible to generate any desired number of such

points (within time and memory limitations) the surface remains defined at a finite number

of such points. No amount of digital preprocessing can completely define the surface

without implementing some sort of interpolating scheme in the hardware of the numerically

controlled machine. The work of early researchers in surface generation often centered on

developing such interpolating schemes (31,33,38,41,421. The interpolating schemes range

from the simplest point-to-point mechanisms, to hardware/software implementation of

Coons' type surface patches [38,401.

The earliest machines, and even simpler machines in use today, are limited to

point-to-point interpolation. Figure 4-1 indicates the process. The machine part

programmer provides a set of coordinate shifts, and the machine simply moves in the given

direction the specified amount. For many simple machining problems, this method is quite

acceptable. However, even slightly complex objects require a vast amount of programming

using this technique. Even in point-to-point schemes there are several choices for

End point

2

Start point

Figure 4-1. Point-to-point interpolation paths [431.
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movement, as indicated in the figure. Although the path indicated as number three would

most often be the optimum, it is the most difficult to implement, especially in a three

dimensional environment. For surface generation it is unlikely that paths one or five would

provide acceptable results, and even path three type point-to-point milling would be a poor

choice.

Other common interpolation schemes are usually grouped under a category

known as contouring or continuous path programming. In reality, even contouring

machines use a point-to-point process, however, they do not require input of all the path

points forming the locus of the desired path. Instead, an integral part of the numerical

control machine calculates the intermediate points based on given coordinates, feed rates,

tolerance requirements and the desired interpolatio- scheme. Contouring machines

normally provide the user with a choice of interpolation paths, most notably linear and

tolerance

~actual curve

chord length

"Figure 4-2. Tolerance geometry [401.

circular paths, and even parabolic paths in some instances. Figure 4-2 indicates the

approximation of a general curve using linear interpolation. Since the curves associated
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with a random surface are defined at a relatively large number of points, it is expected that

linear interpolation will provide an adequate approximation. While circular interpolation

might provide a slightly better fit, the complexity added in determining whether each path

should be interpolated with an inward or outward curve at each point would not be justified

by the improvement.

The shape of a three dimensional surface requires that the cutting be performed

with a ball-end cutter. The combination of a circular cut and finite steps between cutting

paths leads to two problems. First, the actual path cut is circular so that a ridge is developed

between paths. This ridge, commonly referred to as the scallop or step over, is minimized

by use of large radius ball-end cutting tools, and small lateral movements so that cuts

overlap. Secondly, the overcut or undercut caused by an improper offset must be

compensated for, as outlined below.

______ [Ax

nt

Figure 4-3. Geometry indicating method for determination of scallop height.
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Figure 4-3 indicates the geometry associated with the scallop. The lateral

movement, indicated as Ax, and the cutter radius, r, form two sides of an isosceles triangle

whose height, r-h, is given by equation (4-1).

r -h = 2 (4-1)

Solving this equation for the scallop height h provides a method of determining the

minimum value of scallop for a given step and radius.

h = r - 2_ (4-2)

While this scallop is constant for a plane, the milling of a target surface with various slopes

will provide a range of step over heights. Figure 4-4 indicates the determination of the

X

Ax'
surface

Figure 4-4. Geometry indicating method for determination of maximum scallop.
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maximum step over based on maximum slope. This increased height neglects a shift of the

cutter path (offset) discussed below. Here, an increased relative lateral move Ax' can be

seen to be given by equation (4-3).

Ax
cos (4-3)

Using equation (4-2) and the new shift, and taking the maximum slope emax, the

relationship that determines hmax is seen to be:

hmax= r- r- 2cosema (4-4)

As an example, for points 2 mm apart on a 450 slope milled with a 3/4" diameter cutter

would give a scallop of 0.10 mam.

path defined by contour

\ esired contour

area overcut

Figure 4-5. Cutter-tool overcut due to uncorrected path description.
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Figure 4-5 indicates the need for a tool path offset. Normally, the path provided

as input to the numerically controlled machine is that of the centerline of the ball end cutter.

If the cutter path input is exactly that of the desired surface, it is obvious that the surface will

be overcut (or relatively, undercut). This problem is corrected by defining a new offset

based on the surface normal, as shown in figure 4-6. In two dimensions, the new x

coordinate is determined by locating the intersection of the z-coordinate and the surface

normal. Since the surface is three dimensional, two corrections are required, but they are

approximately separable.

x' = x +Ax = x± r(sino0,)

(4-5)
y'= y ± Ay = y ± r(sin 0y)

where the appropriate sign depends on relative slope direction. Since the surface slopes are

Iormal to
• " surface

-0 -. r- ---- -- -- -- z

Figure 4-6. Determination of the tool offset to correct for overcut.
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calculated in the numerical generation, this type offset is easily incorporated into the control

definition routine. The additional increase in scallop height will be negligible since it is a

function of the change in slope from grid point to grid point, which is small for surfaces of

interest.

The construction of a rough surface presents a number of unique problems. As

indicated above, a large radius cutter is desirable, but since the surface consists of hills and

valleys, a maximum cutter size must be determined. The choice of target material is also of

interest, and it is dictated by electromagnetic requirements as well as mechanical constraints.

The limitation of the mill on maximum size may also require construction of the target in

pieces.

To insure that an acceptable scallop is achieved, while minimizing the number of

cut passes, it is necessary to maximize cutter radius. The limit will be defined by either the

minimum curvature of the surface or the maximum available cutter radius for the machine.

To determine the minimum radius of curvature, local minimums of the surface must be

found. The approximate radius of curvature can then be found from figure 4-7 as:

r 2. (r- Az)2 + Ax2  (4-6)

Ax + Az2  (4-7)
2Az
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Tr
Az

4- Ax 

Figure 4-7. Determination of the minimum radius of curvature.

Since there is a maximum radius cutter available for a given numerically controlled mill, it

suffices to check for curvatures less than this maximum.

The material chosen must meet the requirements of the milling process as well as

those of the electromagnetic properties being studied. Many targets will be generated to

study surface scattering effects, and will therefore be expected to approximate perfect

conductors. While numerical control is capable of milling metals such as aluminum

directly, it is common practice to proof numerical control part programs in a material that is

less expensive and easier to machine. Commonly, the part is milled in wax, wood or

foam. These materials are more highly expendible and in most instances can be cut at a

faster feed rate. Since the scatter target will have a conducting surface, it is possible to use

foam as the finished target in many instances by metalizing the surface after milling. In fact,

16 pounds per cubic foot, polyurethane foam was used as the material for the two test

patches described below. As future targets are constructed and tested, it might be desirable

to mill surfaces with specific dielectric properties directly so that volume scattering effects

can be studied.

While numerical control mills exist which can process parts as large as the
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desired target (here about I m by 1 m), many cannot. Additionally, large amounts of data

are necessary in defining the surface and commands to create it so that memory size can be a

factor. Construction of a full target can be accomplished in smaller sections, as indicated in

figure 4-8. The preprocessing for such a construction is handled by blocking the matrices

that describe the surface. It should be noted that the surface must be numerically generated

as a whole however, to insure matching at block edges. Also the blocking should include

some overlap at all edges so that the blocks can be closely fit together. Once each block is

constructed, they can be smoothed to match each adjoining block and dowel-pinned or

otherwise joined together. This method will allow for ease in transport as well since the

target can be temporarily broken into the original blocks. For perfect conductors, some

method of insuring electrical continuity across edges must be implemented, such as metallic

tape, paint , etc. The two blocks marked as I and H1 in figure 4-8 were constructed as tests

of the generation process. Results of this construction are presented in the following

chapters.

Once all surface coordinates have been defined and the data has been modified to

include proper offset, it remains to instruct the numerically controlled mill. A variety of

instruction input methods exist. Some machines are directly connected to mini- or

microcomputers, some read magnetic tape and others use data from paper tape or

keypunched cards. There are two methods of defining cutter movements as well, absolute

or incremental. In absolute definition systems, each new point is given as a set of

coordinate points relative to a previously defined origin. In incremental systems the amount

of movement in each direction is provided as input. The Spindle-Wizard Model I used in

the test generation originally used paper tape input, and can use either type of definition.

To minimize the number of characters in the command input, incremental definition was

chosen. This allows the operator to eliminate unused coordinates in the control input. Each
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II

I t [ i
II

Figure 4-8. Blocking of full target for milling in realizable sections.

paper tape was limited to about 10,000 characters and the machines memory has not been

increased, so conservation of characters is critical in a part program such as that needed to
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con ,truct a random surfa,-e. A cmmand format routine was written to eliminate leP !n-

and trailing zeros, and to eliminate incremental definitions in which the movement was less

than the minimum machine step (0.003 mm). Spaces are also eliminated and point numbers

are kept to a minimum by rotating the point count at 999.

The numerical surface generated as in Chapter 3 can be transformed to a physical

surface by converting the numerical definition to numerical commands for the N/C mill.

The transformation must be accompanied by corrections to the problems of scallop induced

by a ball-end cutter and the overcut due to finite size of the cutter. Scallop height can be

minimized by use of a large radius cutter. The overcut can be corrected for by a prescribed

offset. When these corrections are incorported into a properly formatted command

structure, the machine can generate a sculptured surface with statistics remarkably close to

those input to the generating system. A test of the process is discussed in the following

chapter.



CHAPTER FIVE

RESULTS

The method of surface generation outlined in Chapters 3 and 4 was implemented

using the set of Fortran 77 programs listed in appendix A. A random surface with Gaussian

distributed heights with a correlation length of 2 cm in each of the coordinate directions was

generated. Additionally, two small portions were constructed as a test of the milling

process. Results are presented here. It should be noted that the surface generated is

rougher than would normally be used as a scatterometer target, based on the criteria in

Chapter 2, but adequate construction of this extreme surface insures that less severe targets

can be generated.

Computer Generated Surface

A random surface of I m 2 was generated numerically. The surface was generated

in two steps. First a relatively sparse surface (40,000 points in 1 m by 1 m) was created

using the technique of the first part of Chapter 3. Figure 5-1 is a plot of the probability

density function for the numbers generated in the computers intrinsic random number

generator. The random deviates, after conversion to a normal distribution by the method

of Muller and Box [251, were also checked, and the probability distribution for them is

shown in figure 5-2. These plots indicate the excellent results that can be obtained from the

direct approach to generation of Gaussian distributions. The surface generated

consists of a set of heights (z-coordinates) for each point in a square grid. The

statistics of this surface were checked, including the probability density of the heights and

38
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0.030

0.025"

0.020'

Density 0.015'
Probability 0.010

0.005" M=69,169
0.00J . . . . . . . .

0.0 0.2 0.3 0.5 0.7 0.8 1.0
Number

Figure 5-1. Probability density function of the uniform random numbers generated by
VAX 11/785 intrinsic function.
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Figure 5-2. Probability density function of normal random numbers generated by the
method of Muller and Box [251.
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slopes and the autocorre!tion functin in hn, t the x and v directions. The surface was

generated at a square grid spacing of two points per centimeter, so that a sampling rate of

four points per correlation length was used. Even at this wide spacing, the surface

sampling included 40,000 points. This matrix of surface heights was then passed to the

bi-cubic surface patch routine. The bi-cubic routine defined the surface fully, so that a

larger number of samples could be obtained. A sampling interval of 600 points per meter

was chosen so that a sufficient number of points would be available for the milling process.

The statistics of this 360,000 point surface were also calculated. Both sets of surface

statistics, along with theoretical curves, are shown in figures 5-3 through 5-6. The first

plot, figure 5-3, indicates the agreement of the numerical surface with the desired

input statistics. Normalizing insured that the mean and variance were correct at 0 and I

respectively. As shown, the surface does accurately represent one with a normal

distribution of heights. The distribution of the patched surface also shows excellent

agreement, however a slight change in the mean (0.001) and variance (0.996) occurred.

These changes are negligible, but could easily be corrected for by renormalizing. The

0.45

0.40

0.35

0.30 Surface Heights

Probability 0.25 Theor. 1
Density 0.20 0 After Bi-cubic Patch

0.15

0.10

0.05

0.00
-5 -4 -3 -2 -1 0 1 2 3 4 5

Figure 5-3. Probability density function of computer generated random surface.
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1.0

0.8 Before bi-cubic patci

0.6 --- After bi-cubic: patch
Normalized 0, B b c I

Autocorrelation 
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Figure 5-4. Average normalized autocorrelation function in the x direction of 50 profiiks of

the computer generated random surface.
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0.8
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Normalized 0.6
Autocorrelation 0.5

0.4
0.3
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0.0 " '
0 1 2 3 4 5 6
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Figure 5-5. Average normalized autocorrelation function in the y direction of 50 profiles of

the computer generated random surface.
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'50 1
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Figure 5-6. Normalized probability distribution function in dB of the computer generated

surface slopes in degrees.

normalized autocorrelation functions are shown in figures 5-4 and 5-5. These were taken

by averaging the autocorrelation of 50 profiles along each coordinate direction. As shown,

the agreement between the functions before and after bi-cubic surface patching is

remarkable. Additionally, the calculated correlation lengths of 1.94 cm in the x direction

and 1.96 cm in the y direction before surface patching and 1.96 in x and 1.94 in y after

bi-cubic surface patching are in good agreement with those input (2 cm in each direction).

Finally, figure 5-6 indicates that the probability density of slopes did not change

significantly due to the surface patch process.

For normally distributed surfaces, it would appear that the numerical generation

of the surface by bi-cubic patching the sampled surface provides an excellent representation

of the surface so that the numerically controlled milling process can be used to adequately

reproduce the surface. If a larger number of points is needed for a better milled surface, the

bi-cubic patch can easily be used to generate any number of additional points without

significantly altering the surface statistics. This is due to the combination of the smooth
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process of bi-cubic surface patching and the smooth nature of the surface, so that the

surface is very accurately represented numerically by the equations generated to define it in

bi-cubic patching.

Numerically Milled Test Surface

From the full sized surface generated numerically, two small blocks were

arbitrarily chosen to test the milling process. These blocks were chosen to be adjacent so

that the ability to create the target in blocks and piece them together could also be tested.

The blocks chosen were 10 cm on each side, with an overlap of approximately 4 mm each

(a total overlap on a side of 8 mm). The mill control was generated from the surface

definition, and was then fed to a Spindle-Wizard Model I CNC mill. The mill was

instructed to create the two blocks, shown in figures 5-7 and 5-8. Photographs of the

blocks cut appear in figures 5-9 and 5-10. Measurements of the milled test blocks were

Figure 5-7. Plot of test surface Block 1.
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Figure 5-8. Photograph of milled Block 1.

Figure 5-9. Plot of test surface Block 2.
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Figure 5-10. Photograph of milled Block 2.
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Figure 5-11. Plot of surface height probability density for the two test blocks.
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made with a depth gauge, and the data collected (tabulated in appendix B) indicates that the

agreement with input statistics was satisfactory. Figures 5-11 through 5-14 are plots of the

statistics of the two test blocks.

The plot of surface height distributions, fiugre 5-11, indicates general agreement

in the measured surface heights and numerically generated surface heights and the normal

distribution sought is somewhat apparent. While exact agreement is not present, the lack of

a perfectly normal distribution in the numerical surface indicates that the test blocks most

likely were not extensive enough, and enough samples of height to obtain a good measure

of the statistics of such a rough surface were not provided. The autocorrelation function

plots (figures 5-12 and 5-13) show excellent agreement well past the autocorrelation length

measured to be approximately 1.9 cm. Errors in the tails of the curves are most likely

attributable to the small extent of the surface so that a window of measurable values is

placed on the surface, causing a ringing in the function measured. The plot of slopes shows

a large variation in the first point for each graph. This offset due to the larger number of

zero slope values; all indeterminant edge slopes are set to zero, and this can become a

significant percentage in surfaces with fewer measured measured or generated points.

Therefore, the graphs are each normalized by the value of the zero slope point of the patched

surface for comparison. The overall trend in all three surfaces is, however, similar. Again,

errors are likely due to measurement limitations.

Most of the differences in measured values are probably due to measurement

errors, attributable to difficulty in making the measurements, as opposed to actual

differences in the surfaces generated numerically and physically. The accuracy limitation of

the mill (on the order of .001 inches, or .0004 cm) far exceeds measurement accuracy

available in any standard measurement scheme. Approximately 600 heights were measured
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for the two blocks, on a superimposed square grid. This small number of measurements

can not be expected to provide absolute accuracy. Future measurements are expected to be

made on a CNC device so that a much larger set of data can be obtained with excellent

accuracy. For instance, the Spindle-Wizard Model I CNC mill can be made to measure the

surface heights to an accuracy even greater than that to which milling can be controlled, and

data can be directly transfered to a computer for analysis.

The process of generating a random surface with the statistics specified prior to

generation was tested with excellent results. While the measured statistics of the surfaces

generated were not identical to those input, the agreement is reasonable considering the

small size of the generated surface and the limitation on measurements. The process is

discussed with consideration of some improvements in the following chapter, with an

emphasis on future additions to the generation process.

1.0

0.8 [ Before bi-cubic patch

I - After bi-cubic patch

Normalized 0 Measured

Autocorrelation 0.4

0.2

0.0 00o 2 3 4 5 6
-0.2 1
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Figure 5-12. Plot of averaged normalized autocorrelation in the x direction of the two test

blocks
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Figure 5-13. Plot of average normalized autocorrelation in the y direction of the two test

blocks
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Figure 5-14. Plot of normalized slope probability density for the two test blocks.



CHAPTER SIX

CONCLUSIONS

In Chapter 3, the development of a process for generating numerically a random

surface with predetermined statistics was presented. The surface so generated can then be

constructed using the :t,-hniques outlined in Chapter 4. As indicated in the results, the

generation of a Gaussian surface can be implemented using these methods. The resultant

target will provide a basis for testing the theories proposed to explain scattering from

random surfaces, since the statistics can be set to any reasonable and desirable values. In

fact, the generation of such a target with various statistics should be achieved in the very

near future. Several aspects of the generation technique have been presented, and for the

most part each is independent. Generation of the surface on a different mill for instance,

with a different control language would only necessitate changes in one step of the process,

that of formatting the commands from the generated surface. Likewise, generation of

surface with other than strictly normal statistics, such as two-scale rough surfaces, Rayleigh

distributed surfaces, etc, would only require a change in the original surface generation

process. Once the surface had been defined at a number of given points, the mechanical

generation process would be identical to that described here. In this respect, the desired

generic nature of the process has been achieved.

A number of improvements are available to the process however. For instance,

there are numerically controlled mills that can produce sculptured surfaces such as those of a

random target using a method referred to as five-axis-control. In these machines, the

ball-end cutter is maintained at a normal to the surface at all times by allowing additional
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motion in azimuth and elevation along with control of the three coordinate axes. Such a

machine would be able to generate a random surface much faster and with a much smaller

amount of preprocessing.

Future research in scattering phenomenon will require more complex targets,

some with different statistics and others with changes in other various parameters. The use

of a two-scale rough surface would allow the measurement of the target at both ends of the

roughness spectrum using only one decade of frequency variation. For instance,

illumination over a range of 2-18 GHz could be accomplished on a surface constructed with

roughness statistics as follows. For large scale roughness, equation (2-3) is applied to the

X = 1.7 cm frequency, giving k1 = 377 so that 1 > 1.5 cm and a < 0.5 cm. For the small

scale, X = 15 cm and k = 42. Applying equation (2-4) gives a1 < 0.7 cm and I > 4 cm.

Volume scattering could be studied by use of a non-metalized target, if a

machineable material with an appropriate dielectric constant can be obtained. The addition

of other scatter sources to a background of a rough surface is anticipated, for instance, the

Fiur e6-1ee. .... Mut-ae rog inerface. I

%%%% % % % % %% % % %% %p % % % %% % % % % % % % % % % % %s%s % %

Figure 6- 1. Multi-layer rough interface.
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addition of an artificial canopy. The effects of multiple layered scattering could also be

studied by generation of two surfaces, with compatible surfaces so that the two would make

a fit such as that shown in figure 6- 1. Such generation would actually be fairly simple, a

change in the sign of the z-coordinate movement of the mill from one surface to the next,

while maintaining all other controls identical would provide such an interface. The top

surface could have an identical surface, or any other of interest.

Another improvement in the measurement process might be the comparison of

numerical simulations to those of the identical target in a real environment by using the same

surface generated numerically for the simulation as the basis for the physical target

generation. Such a test would 1lkely provide a great deal of insight into the scattering

phenomenon as well as verifying the simulation process.
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COMPUTER PROGRAMS
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C
C SURFACE GENERATOR
C

C PROGRAM GENERATES A GAUSSIAN DISTRIBUTED RANDOM SURFACE

C
C

PARAMETER (NXCM--4,NYCM=4,NPTCM=l ,NWX=63,NWY=63,CLXCM=2.0,

+ CLYCM=2.0,STDH=1.0)

C
C

C * ***INPUT PARAMETERS ARE*** *

C * NXCM,NYCM = DIMENSIONS IN X AND Y DIRECTIONS (IN CM) *

C * NPTCM = NUMBER OF GENERATED POINTS IN EACH CENTIMETER *

C * NWX, NWY ARE EXTENTS OF WEIGHTS IN X AND Y DIRCTNS *
C * (TAKEN TO POINT WHERE WT<= IE-63 *

C * CLXCM, CLYCM ARE CORRELATION LNGTHS IN X, Y DIRCTNS *

C * STDH = STANDARD DEVIATION OF HEIGHTS DESIRED *

C

C

C DECLARATIONS:

C

REAL Z(NXCM*NPTCM,NYCM*NPTCM)

REAL R(NXCM*NPTCM+NWX,NYCM*NPTCM+NWY)

REAL W(NWX,NWY), S I (NXCM*NPTCM,NYCM*NPTCM)

REAL X(NXCM*NPTCM), Y(NYCM*NPTCM)

REAL S2(NXCM*NPFCM,NYCM*NPTCM)

REAL S3(NXCM*NPTCM,NYCM*NPTCM)

C
C *****************************************************************

C * ** MATRICES USED** *

C * Z = THE Z COORDINATES (IN CM) OF THE SURFACE *

C * R = A MATRIX OF RANDOM NUMBERS *

C * X, Y = COORDINATES OF THE GRID IN CM *
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C * W = MATRIX OF GAUSSIAN WEIGHTS *

C * S I dzdx FOR EACH GRID POINT *

C * 2= dz/dy AT EACH GRID POINT *

C * S3 = CROSS DERIVATIVE d2z/dxdy AT EACH GRID POINT *

C *****************************************************************

C

C CONVERT UNITS PER CENTIMETER TO UNITS:
C

NX = NXCM*NPTCM
NY = NYCM*NPTCM

CLX = CLXCM*NPTCM

CLY = CLYCM*NPTCM

C

C FIND SIZE OF RANDOM NUMBER MATRIX

C

NRX = NX+NWX

NRY = NY+NWY

C

C
C ************************************************************

C THE SUBROUTINES WFCTION, GRANDOM, AND SURFACE
C WERE ADOPTED FROM ALGORITHMS OF
C DR. A. K. FUNG & DR. M. F. CHEN
C ************************************************************

PRINT*,'WEIGHTS'

CALL WFCTION(W,NWX,NWY,CLX,CLY)

C
C THE SUBROUTINE WFCTION RETURNS AN NWX X NWY MATRIX OF
C WEIGHTS

C REPRESENTING A DIGITAL FILTER THAT WILL GENERATE
C CORRELATION

C LENGTHS OF CLX AND CLY IN THE X AND Y DIRECTIONS

C RESPECTIVELY
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C

C

PRINT*,'RANDOM NUMBERS'

CALL GRANDOM(R,NRX,NRY)

C

C THE SUBROUTINE GRANDOM RETURNS A NRX X NRY MATRIX OF

C GAUSSIAN DISTIBUTED RANDOM NUMBERS BASED ON AN INTRINSIC

C UNIFORM RANDOM NUMBER GENERATOR

C

PRINT*,'SURFACE'

CALL SURFACE(Z,R,W,NX,NY,NWX,NWY)

C

C tHE SUBROUTINE SURFACE RETURNS AN NX X NY MATRIX Z OF

C SURFACE

C HEIGHTS WITH A DISTRIBUTION LIKE R'S AND CORRELATED BY W

C

CALL NORMLZ(Z,NX,NY,STDH)

C

C THE SUBROUTINE NORMLZ RETURNS A NORMALIZED VERSION OF Z IN

C Z

C NORMALIZED SO THAT THE STANDARD DEVIATION OF Z IS STDH

C (INPUT)

C

C OUTPUT THE SURFACE

C

OPEN(UNIT=5,FILE='[B943AJB.ROCHIER.DATAISURFACEZS.DAT',
* RECORDTYPE='SEGMENTED',STATUS='UNKNOWN',

* FORM='UNFORMA1TED')

WRITE(5) NX,NY
WRITE(5) Z

CLOSE(5)

C

PRINT*,'SLOPES'



CALL SLOPES (X,Y,Z,NX,NY,NPTCM,S 
1,S2,S3) 

5

C THE SUBROUTINE SLOPES DETERMINES THE DERIVATIVES OF THE

C Z MATRIX BASED ON EQUAL SPACING IN X AND Y DIRECTIONS USING

C CENTERED DIFFERENCEING. S I CONTAINS DZ(DX, S2 DZIDY, AND S3

C D2Z/DXDY. INDETERMINATE EDGE SLOPES ARE SET TO ZERO. X AND Y

C GRID COORDINATES ARE RETURNED IN ARRAYS X AND Y. THE

C SUBROUTINE

C INCLUDES CALLS TO SUBROUTINE GRID AND SUBROUTINE GRADIENT.

C

C OUTPUT THE GRID COORDINATES

C

OPEN(UNIT=8,FILE='IB943AJB.ROCIHER.DATAI SURFACEXS .DAT',
" RECORDTYPE='SEGMENTED',STATUS='UNKNOWN',

" FORM=UNFORMATTED')

OPEN(UNIT=5,FILE='[B943AJB.ROCHIER.DATAJSURFACEYS.DAT',
" RECORDTYPE='SEGMENTED',STATUS='UNKNOWN',

" FORM=UNFORMATI'ED')

WRITE(8) NX

WRITE(8) X

WRITE(5) NY

WRITE(S) Y

CLOSE(8)

CLOSE(5)

C

C OUTPUT THE SLOPES

C

OPEN(UNIT=5,FILE='IB943AJB .ROCHIER.DATA] DZDX.DAT',
" RECORDTYPE='SEGMENTED',STATUS='UNKNOWN',

" FORM=UNFORMATITED')

OPEN(UNIT=8,FILE=[B943AJB.ROCHIER.DATAIDZDY.DAT',
" RECORDTYPE='SEGMENTED',STATUS='UNKNOWrN',

" FORM=UNFORMAFITED')
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OPEN(UNIT=1 1 ,FILE='[B943AJB.ROCHIER.DATAID2ZDXDY.DAfl,
" RECORDTYPE='SEGMENTED',STATUS='UNKNOWN',
" FORM=UNFORMATTED')

WRITE(5) NX,NY
WRITE(5) S I
WRITE(8) NX,NY
WRITE(8) S2
WRITE(1 1) NX,NY

WRITE(1 1) S3
CLOSE(5)

CLOSE(8)
CLOSE(1 1)

C

STOP
END

C
C

C ************************SUBROU-lI.ES**********************

C
SUBROUTINE WFCTON (W,NWX,NWY,CLX,CLY)
REAL W(NWX,NWY),CLX,CLY

IW = (NWX+1)/2

JW = (NWY+ 1)/2
COE = 2./S QRT(3. 141 59265*CLX*CLY)
DO IN J ,NWY

DO02 1= I,NWX
W(Ij) = COE* EXP(-2. *6jkIW/CLX)* *2-

+ 2. *((~J-W)/CLY)* *2)
2 CONTINUE

I CONTINUE
RETURN
END

C
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C

SUBROUTINE GRANDOM(R,NRX,NRY)

REAL R(NRX,NRY)

ISEED = 3339

DO 1 J=I,NRY

DO02 1= 1,NRX-1,2

RI = RAN(ISEED)

V I = SQRT(-2.*ALOG(R 1))

R2 = RAN (ISEED)

TI =6.2831853*R2

R(Ij) = V1I*COS(T I)

R(I+1,J) = VI*SIN(TI)

2 CONTINUE

1 CONTINUE
RETURN

END

C

C

SUBROUTINE SURFACE (S,R,W,NX,NY,NWX,NWY)

REAL S(NX,NY), R(NX+NWX,NY+NWY),W(NWX,NWY)

DO 1 L = 1,NY

PRINT*,'ROW #',L

DO 2K = 1,NX

S(K,L) = 0.0

DO 3M = i,NWY

DO 4 J= I,NWX

S(K,L) = S(K,L) + W(J,M)*R(K+J- 1,L+M- 1)

4 CONTINUE

3 CONTINUE

2 CONTINUE

I CONTINUE

RETURN

END
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C

C

SUBROUTINE NORMLZ (Z,NX,NY,STDH)

REAL Z(NX,NY)

CALL STANDARD(Z,NX,NY,STDEV,AMEAN)
PRINT*,'PRENORMALIZED ST DEV = ',STDEV

PRINT*,'MEAN =', AMEAN

DO3J= 1,NY

DO 4 1 = 1,NX

Z(I,J) = (Z(I,J)-AMEAN)*STDHSTDEV

4 CONTINUE

3 CONTINUE

RETURN

END

C

C

SUBROUTINE SLOPES (X,Y,Z,NX,NY,NPTCM,S1,S2,S3)

REAL Z(NX,NY), S I (NX,NY), S2(NX,NY), S3(NX,NY), X(NX),Y(NY),DI

DI = 1.0/NPTCM

CALL GRID(X,NX,D 1)

CALL GRID(Y,NY,DI)

C THE SUBROUTINE GRID RETURNS AN ARRAY OF EQUALLY SPACED

C VALUES

C EQUAL TO D I

CALL GRADIENTS (Z,X,Y,NX,NY,S 1,S2,S3)

C THE SUBROUTINE GRADIENTS RETURNS THE FINITE DIFFERENCE

C DERIVATIVES IN EACH DIRECTION AND THE CROSS DERIVATIVE

RETURN

END

C

C

SUBROUTINE GRID (X,NX,DI)

REAL X(NX),DI
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DO 1 J = 1,NX

X(J) = (J-1)*Dl

CONTINUE

RETURN

END

C

C

SUBROUTINE GRADIENTS (Z,X,Y,NX,NY,DZDX,DZDY,DZDXY)

REAL Z(NX,NY), X(NX), Y(NY), DZDX(NX,NY), DZDY(NX,NY)

REAL DZDXY(NX,NY)

DO 1 J =2,NX-1

DO02 K =2, NYA

DZDX(J,K) = (Z(J+ I ,K)-Z(J- I ,K))/(X(J+ I )-X(J- 1))

DZDY(J,K) = (Z(J,K+ 1)-Z(J,K-1I))I(Y(K+ I)-Y(K- 1))

DZDXY(J,K) = (Z(J+ 1,K+ l)-Z(J+ 1,K- 1)-Z(J-1I,K+ I)+

+ Z(J-1,K1)(X(+)XJ-)*YK )YK1)))

2 CONTINUE

I CONTINUE

DO3 J =1,NY

DZDX(l,J) =0.0

DZDXY(I,J) =0.0

DZDX(NX,J) =0.0

DZDXY(NX,J) = 0.0

3 CONTINUE

DO 4J= 1,NX

DZDY(J, 1) = 0.0

DZDXY(J,1) =0.0

DZDY(J,NY) =0.0

DZDXY(J,NY) = 0.0

4 CONTINUE

DO 51 = 2,NY-1

DZDY( I,J) = (Z( I,J+ I )-Z( 1,J- 1 ))/(Y(J+ 1 )-Y(J- 1))

DZDY(NX,)-' = 'NX,J+1I)-Z(NX,J-I1))/(Y(J+ I)- Y(J- 1))
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5 CONTINUE

DO 6J =2,NX-1

DZDX(J, 1) =(Z(J+1 ,1 )-Z(J- 1,1 ))/(X(J+1 )-X(J- 1))
DZDX(J,NX) = (Z(J+1 ,NX)-Z(J- 1,NX))/(X(J+ 1)-X(J- 1))

6 CONTINUE

RETURN

END

C

C

SUBROUTINE STANDARD(Z,NX,NY,STDEV,AMEAN)

REAL Z(NX,NY)

SUMSQ = 0.0

SUM = 0.0

NP = NX*NY

DO I J =1,NY

DO 2 1I 1,NX

SUMSQ =SUMSQ+(Z(I,J)*Z(IJ))

SUM = SUM + Z(1J)

2 CONTINUE

I CONTINUE

SQSUM = SUM*SUM

RNP = FLOAT(NP)

STDEV = SQRT((SUMSQ*RNP-SQSUM)/((RNP- 1)*RNP))

AMEAN = SUM/RNP

RET'URN

END



62

C

C BI-CUBIC SURFACE PATCH
C

C PROGRAM GENERATES AN EXPANDED (IN NUMBER OF POINTS)

C SURFACE

C

C

PARAMETER (NXMAX=200,NYMAX=200,NSDV= 10)

C
C

C * ***INPUT PARAMETERS ARE: *

C * NX,NY = DIMENSIONS IN X AND Y DIRECTIONS *

C * NSDV = NMBR OF ADDITIONAL SEGMENTS GENERATED BY THE *

C * BI-CUBIC SURFACE PATCH *

C

C

C DECLARATIONS:

C

REAL Z(NXMAX,NYMAX)

REAL X(NXMAX), Y(NYMAX), S1(NXMAX,NYMAX), S2(NXMAX,NYMAX)

REAL S3(NXMAX,NYMAX)

REAL XEX((NXMAX- I )*NSDV+1), YEX((NYMAX- 1)*NSDV+1)

REAL ZEX((NXMAX- I)*NSDV+ 1,(NYMAX- 1)*NSDV+ 1)

REAL SI EX((NXMAX- 1 )*NSDV+ 1 ,(NYMAX- 1)*NSDV+ 1)

REAL S2EX((NXMAX-1)*NSDV+1,(NYMAX-1)*NSDV+1)

REAL S3EX((NXMAX- 1 )*NSDV+ 1,(NYMAX- 1)*NSDV+1)

C
C *****************************************************************

C * ** MATRICES USED *

C * Z = THE Z COORDINATES (IN CM) OF THE SURFACE *

C * X, Y = COORDINATES OF THE GRID IN CM *

C * S 1 = dz/dx FOR EACH GRID POINT *

C * S2 = dz/dy AT EACH GRID POINT *
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C * S3 = CROSS DERIVATIVE d2Z/dxdy AT EACH GRID POINT
C * Z,X,Y,S 1,S2,S3 HAVE CORRESPONDING MATRICES IN THE~

C EXPANDED AREA -- INDICATED BY ZEX, XEX...
C

C
C

OPEN(UN1T=5,FILE='[B943A1-B.ROCFHER.DATAI SURFACE_-ZS .DAT-,

& RECORDTYPE='SEGMENTED',STATUS=OLD',FORM='UNFORMNITED')
OPEN(UNIT=8,FILE='[B943AJB.ROCIER.DATAISURFAC-EXS.DAV,

& RECORDTYPE='SEGMENTED',STATUS=OLD,FORM='UNFORMKFFED')

OPEN(UNIT=1I ,FILE='[B943AJB.ROCHIER.DATA]SURFACEYS.DAT',
& RECORDTYPE=SEGMENTED',STATUS='OLD,FORM='UNFORMATTED')

C
C FIND DIMENSIONS OF EXPANDED MATRICES

C
READ(5) NX,NY
PRINT*,NX,NY
READ(8) [DUMMY
READ(1 1) IDUMMY

C
C READ INPUT SURFACE AND GRID MATRICES

C
READ(5)((Z(IJ),I=1 ,NX),J=1 ,NY)
READ(8)(X(I),I= 1,NX)
READ(1 1)(Y(J)J=1,NY)

CLOSE(5)
CLOSE(8)
CLOSE(l1)

OPEN(UNIT=5,FILE='[B943AJB.ROCIER.DATAID2ZDXDY.DAT-,
& RECORDTYPE='SEGMENTED',STATUS='OLD,FORM=&UNFORMATrED')

OPEN(UNIT=8,FILE=IIB943AJB.ROCHIER.DATAIDZDX.DAT',
& RECORDTYPE='SEGMENTED',STATUS=OLD,FORM=UNFOR MATTED')
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OPEN(UNIT=1 1 ,FILE='IIB943AJB.ROCFHER.DATAIDZDY.DAT',

& RECORDTYPE='SEGMENTED',STATUS='OLD',FORM='UNFORMA'ITED')

C READ SLOPE MATRICES

C

READ(5) IDIJMMY,IDUMMY

READ(8) IDUMMY,IDUMMY

READ(1 1) LDUMMY,IDUMMY

READ(5)((S3(I,J),I=1 ,NX),J=I 'NY)
READ(8)((S 1(I.J),I=1 ,NX),J=I 'NY)

READ(1 1)((S2(I,J),I= 1,NX),J= 1,NY)

CLOSE(5)

CLOSE(8)

CLOSE(1 1)

OPEN(UNIT=5,FILE=([B943AJB.ROCMiER.DATA] SURFACEZS .DAT',

& RECORDTYPE='SEGMENTED',STATUS='UNKNOWN',

& FORM=UNFORMATTED')

OPEN(UNIT=8,FILE='[B943AJB.ROCHIER.DATAJ SURFACEXS .DAT-,
" RECORDTYPE='SEGMENTED',STATUS='UNKNOW N',
& FORM=UNFORMATTED')

OPEN(UNIT= 1,FILE=T[B943AJB.ROCIER.DATA] SURFACEYS .DAT',
" RECORDTYPE='SEGMENTED,STAThS='UNKNOwrN',

" FORM=UNFORMATrED')

C

C FIND EXPANDED DIMENSIONS

C

NXEX = (NX-1)*NSDV+l

NYEX = (NY-1)*NSDV+1

C

WRITE(5) NXEX,NYEX

WRITE(8) NXEX

WRITE(l1I) NYEX
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C

CALL SURFPATCH(Z,X,Y,S 1 ,S2,S 3,NX,NY,NSDV,ZEXXEX,YEX)

C

C THE SUBROUTINE SURFPATCH RETURNS AN EXPANDED ZEX MATRIX

C VERSION OF Z BASED ON THE INTERPOLATION TECHNIQUE OF

C BI-CUBIC SURFACE PATCH-- NSDV INDICATES DESIRED NUMBER

C OF NEW SEGMENTS FOR EACH OLD ONE. IN ADDITION, MATCHING

C X AND Y GRID COORDINATES ARE DETERMINED AND RETURNED

C IN XEX AND YEX. SURPATCH CALLS SUBROUTINE SUBDIVIDE AND

C SUBROUTINE BCUCOF.

C

C OUTPUT THE EXPANDED SURFACE AND GRID

C

WRITE(S) ((ZEX(LJ),I=1,NXEX),J=1,NYEX)

WRITE(8) (XEX(I),I= 1,NXEX)

WRITE(1 1) (YEX(J),J=1,NYEX)

CLOSE(5)

CLOSE(8)

CLOSE(1 1)

C

OPEN(UNIT=5,FILE='[B943AJB.ROCHER.DATA] D2ZDXDY.DAT',

" RECORDTYPE='SEGMENTED',STATUS='UNKNOWN',

" FORM='UNFORMATTED')

OPEN(UNIT=8,FILE='[B943AJB.ROCHER.DATA] DZDX.DAT',

" RECORDTYPE='SEGMENTED',STATUS='UNKNOWN',

" FORM=UNFORMATrED')

OPEN(UNIT=1 1,FILE='[B943AJB.ROCHIER.DATA]DZDY.DAT',

" RECORDTYPE='SEGMENTED',STATUS='UNKNOWN',

" FORM=UNFORMATTED')

C

CALL GRADIENTS (ZEXXEX,YEX,NXEX,NYEX,S I EX,S2EX,S3EX)

C
C SUBROUTINE GRADIENTS RETURNS EXPANDED SLOPE MATRICES
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C S IlEX (d/dx), S2EX (dz/dy), AND S 3EX (d2zr/dxdy).
C
C OUTPUT THE EXPANDED SLOPES
C

WRITE(5) NXEX,NYEX
WRITE(8) NXEX,NYEX
WRITE( 1) NXEX,NYEX

C
WRITE(5)((S3EX(I,J),11 ,NXEX),J±I ,NYEX)
WR1TE(8)((S I EX(IJ),I= I ,NXEX),J=1 ,NYEX)
WRITE( 1l)((S2EX(IJ),I= 1,NXEX),J 1NYEX)

C
CLOSE(S)
CLOSE(8)
CLOSE(1 1)

C
100 FORMAT(4(F13.9,y,,2X),Fl3g9)
110 FORMAT(I5)
120 FORMAT(2 IS)

STOP
END

C

SUBROUTINE GRADIENTS (Z,X,Y,NX,NY,DZDXDZDYDZDXY)
REAL Z(NX,NY), X(NX), Y(NY), DZDX(NX,NY), DZDY(NX,NY)
REAL DZDXY(NX,NY)

C. Es"

DO I1J =2,NX-1
PRINT*,'ROW #1 ',

D02 K=2, NY-I
DZDX(J,K) =(Z(J+ 1,K)-Z(J- 1,K))/(X(J+ 1)-X(J- 1))
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DZDY(J,K) =(Z(J,K+ 1 )-Z(J,K- 1 ))/(Y(K+ 1 )-Y(K- 1))

DZDXY(J,K) = (Z(J+ 1 ,K+ 1 )-Z(J+ 1 ,K- 1 )-Z(J- 1 ,K+ 1 )+

+ Z(J- 1,K- 1))/((X(J+1 )-X(J- 1))*(Y(K+ 1)-Y(K- 1)))

2 CONTINUE

ICONTINUE

DO 3 J= 1,NY

DZDX( 14) = 0.0

DZDXY(1,J) =0.0

DZDX(NX,J) =0.0

DZDXY(NX,J) = 0.0

3 CONTINUE

DO 4 J= 1,NX

DZDY(J,1I) = 0.0

DZDXY(J, 1) =0.0

DZDY(J,NY) =0.0

DZDXY(J,NY) = 0.0

4 CONTINUE

DO 5 J =2,NY-1

DZDY( I,J) = (Z(14+1 I)-Z( 1,J- 1 ))I(Y(J+ 1 )-Y(J- 1))

DZDY(NX,J) = (Z(NX,J+ I)-Z(NX,J- 1))/(Y(J+ 1)-Y(J- 1))

5 CONTINUE
DO6 J =2,NX-1

DZDX(J, 1) = (Z(J+ 1,1 )-Z(J- 1, 1))/(X(J+ 1 )-X(J- 1))

DZDX(J,NX) = (Z(J+ I,NX)-Z(J- 1,NX))/(X(J+ I)-X(J- 1))

6 CONTINUE

RETURN

END

C

C

SUBROUTINE SURFPATCH(Z,X,Y,S 1,S2,S3,NX,NY,NSDV,

+ ZEXXEX,YEX)

REAL Z(NX,NY),X(NX),Y(NY),S 1 (NX,NY),S2(NX,NY),S3(NX,NY)

REAL ZEX((NX- 1 )*NSDV+ 1 ,(NY- 1 )*NS DV+ 1)
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REAL XEX((NX- 1)*NSDV+ 1)

REAL YEX((NY.-1)*NSDV+1)

REAL V(4),V I(4),V2(4),V3(4), XT(100),YT( 100)

REAL ZT(1 00, 100)

DO I K = 1,NX-I

PRINT*,'ROW #',K

DO 2 L= 1,NY-1

CALL SUBDIVIDE(Z,NX,NY,S1I,S2,S3,K,L,V,V 1,V2,V3)

C

C SUBROUTINE SUBDIVIDE RETURNS A SINGLE PATCH OF THE SURFACE,

C INCLUDING THE FOUR CORNER HEIGHTS, SLOPES, AND TWISTS.

C

XL = X(K)

XU =X(K+1)

YL=Y(L)

YU =Y(L+I1)

CALL BCUINT(V,V 1,V2,V3,XL,,XU,YL,YU,NSDV,ZT,XT,YT)

C

C SUBROUTINE BCUINT RETURNS AN EXPANDED PATCH BASED ON THE

C BICUBIC INTERPOLATION TECHNIQUE. THE SUBROUTINE BCUCOF IS

C CALLED.

C

DO 3 J =I,NSDV+I

INI =(K-I)*(NSDV)+J

1N2 =(L-1)*(NSDV)+J

XEX(IN1I) = XT(J)

YEX([N2) = YT(J)

DO04 1= I,NSDV+1

IN2=(L-1)*NSDV+I

ZEX(IN,1N2) = ZT(J,I)

4 CONTINUE

3 CONTINUE
2 CONTINUE
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I CONTINUE

RET1URN

END

C

c

SUBROUTINE SUBDIVIDE(Z,NX,NY,S 1,S2,S3,K,L,V,V1I,V2,V3)

REAL Z(NX,NY),SI1(NX,NY),S2(NX,NY),S 3(NX,NY)

REAL V(4),V1(4),V2(4),V3(4)

C

V(1) = Z(K,L)

V(2) = Z(K+ 1,L)

V(3) = Z(K+1,L+1)
V(4) = Z(K,L+1)

C

VI(1) =SI(K,L)

V 1(2) S I1(K+ 1,L)

VI1(3) S SI(K+ 1,L+ 1)

V1(4) =Sl(K,L+1)

C

V2(1) =S2(K,L)

V2(2) = S2(K+1,L)

V2(3) = S2(K+1,L+1)

V2(4) = S2(K,L+1)

C

V3(1) = S3(K,L)

V3(2) = S3(K+1,L)

V3(3) = S3(K+1,L+1)

V3(4) = S3(K,L+1)

C

RETURN

END

C

C
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SUBROUTINE BCUINT(V,V 1,V2,V3,XLXU,YL,YU,NSDV,ZT,XT,YT)

REAL V(4), V 1(4), V2(4), V3(4), ZT(100,100), XT(100)

REAL YT(100), C(4,4)

C

XDIF = XU-XL

YDIF = YU-YL

DX = XDIF/(NS DV)

DY = YDIF/(NSDV)

CALL BCUCOF(V,V1I,V2,V3,XDIF,YD[F,C)

C

C SUBROUTINE BCUCOF RETURNS IN C 16 COEFFICIENTS

C CORRESPONDING TO THE EQUATION OF THE PATCH

C

DO I1J= l,NSDV+1

XT(J) = (J- 1)*DX+XL

YT(J) = (J 1)*DY+YL

1 CONTINUE

DO 21J= 1, NSDV+1

U = (YT(J)-YL)/YDIF

DO 3 1 = 1,NSDV+l
T = (XT(l)-XL)/XDIF

A = 0.0

DO 4 K = 4, 1,-l

A=T*A+((C(K,4)*U+C(K,3))*U+C(K,2))*U+C(K, 1)

4 CONTINUE

ZT(Ij) = A

3 CONTINUE

2 CONTINUE

RETURN

END

C

C
SUBROUTINE BCUCOF(V,V1I,V2,V3,XDIF.YDIF,C)
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REAL V(4), V 1(4), V2(4), V3(4), C(4,4)

REAL CL(16), X(16), WT(16,16)

DATA WT/1,0 ,,*,309,620-,,*,30-,,206
" -4, 10*0,9,-6,2*0,-6,4,2*,3,2,6*0,9,6,2*0,6,-4,

" *0,,,32,206-,10-,,80 ,,-2,1,0,-3 ,2,

" 10*0,-3,2,2*0,3,-2,6*0,3,2,2*0,6,4,2*0,3,-2,

" 0,1 ,-2, 1,5*0,-3,6,3,0,2,4,2,9*0,3,6,3,0,2,4,-2,

" 1O*O,-3,3,2*,2,2,2*0,1,1,6*0,3,3,2*0,-2,2,
" * 0,,210 ,,-,,,219 0-12-,,,2

*0*,1,-i ,2*0,- 1,1 ,6*O,- 1,1 ,2*0,2,-2,2*0,- 1,1/

C
D2 = XDIF*YDEF

DO I I= 1,4
X(I) =V(I)

X(I+4) = VlI(I)*XDIF

X(1+8) = V2(I)*YDIF

X(1+ 12) = V3(I)*D2

I CONTINUE
DO 21 = 1,16

xx-_o.0
DO 3K = 1,16

XX = XX+WT(I,K)*X(K)

3 CONTINUE
CL(I) = XX

2 CONTINUE
L=O

DO04 1= 1,4
DO 5 J= 1,4

L = L+1

C(I,J) = CL(L)

5 CONTINUE
4 CONTINUE

RETURN
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END
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C

C RADIUS TEST AND CORRECTION PROGRAM
C ************************************************************

C PROGRAM CHECKS FOR APPROXIMATE MINIMUM RADIUS OF

C CURVATURE

C THEN CORRECTS X AND Y COORDINATES ACCORDING TO INPUT OF

C DESIRED RADIUS OF BALL END CUTTER.

C

PARAMETER(NXM AX= 130,NYMAX=130)

C
C ************************************************************

C * ***INPUT PARMATERS ARE*** *

C * NX,NY = DIMENSIONS OF SURFACE IN EACH DIRECTION *

C * R = RADIUS OF A BALL END CUTTER *

C ************************************************************

C

C DECLARATIONS:

C

REAL Z(NX MAX,NYMAX),XOLD(NXMAX),YOLD(NYMAX)

REAL XNEW(NXMAX,NYMAX),YNEW(NXMAX,NYMAX)

REAL S I (NXMAX,NYMAX), S2(NXMAX,NYMAX)

REAL XINCR,YINCR,ZINCR,R

C

C ***********************************************************

C * **MATRICES USED** *

C * Z = SURFACE HEIGHTS *

C XOLD, YOLD = 1-D INPUT ARRAYS OF COORDINATES *

C * XNEW,YNEW = 2-D OUTPUT GRID VALUES *

C * S1,S2 = SLOPES IN THE X AND Y DIRECTIONS *

C ********************************************************

C

C INPUT TIlE SURFACE HEIGHTS

C
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OPEN (UNIT=5,FILE='[B943AJB.ROCHIER.DATAIS URFACEZS .DAT',

& RECORDTYPE='SEGMENTED',STATUS='OLD',FORM='UNFORMATTED')

C

READ(S) NX,NY

PRINT*,NX,NY

READ(5)((Z(I,J),I= 1,NX),J= 1,NY)

CLOS E(5)

C

C INPUT THE GRID

C

OPEN (UNIT=5,FWLE='[B943AJB.ROCHIER. DATA] SURFACEXS.DAT',

& RECORDTYPE='SEGMENTED',STATUS='OLD',FORM='UNFORMATTrED')

C

READ(S) IDUMMY

READ(5)(XOLD(I),I=1 ,NX)

CLOSE(S)

OPEN (UNIT=5,FILE='[B943 AJB. ROCHIER. DATA] S URFACEY S.DAT',

& RECORDTYPE='SEGMENTED',STATU S='OLD',FORM=UNFOR MATTED')

C

READ(S) IDUMMY

READ(S)(YOLD(I),I= 1,NX)

CLOSE(S)

C INPUT THE SLOPES

OPEN W NIT=S.FILE='[B943AJB. ROCHIER. DATA JDZDX. DAT,

& RECORDTYPE='SEGMENTED',STATUTS='OLD',FORM=&UNFORMAITED')

C

READ(S) IDUMMYIDUMMY

READ(5)((S I (I,J).I=1 ,NX),J= 1,NY)

CLOSE(S)
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OPEN (UNIT=5,FWE='[B943MJB.ROCHIER.D)ATAIDZDY.DA.-,

& RECORDTYPE='SEGMENTED,STATUS=OLD',FORM='UNFORMATTED')

C

READ(5) IDUMMYJDUMMY

READ(5)((S2(IJ),I= 1,NX),J=I ,NY)

CLQSE(5)

C

C FIND THE MINIMUM RADIUS OF CURVATURE

C

RMrN=-999

XLNCR=XOLD(2)-XOLD(1)

DO 1 J=1,NY

ZLAST=Z( 1,J)

DO02 [ =2,NX-
ZINCR=Z(IJ)-ZLAST

ZLAST=Z(IJ)

IF(ABS(Z(I+ 1,J)-ZLAST).GT.ABS(ZIN~CR))

& ZINCR=Z(1+ I,J)-ZLAST

IF (S 1(1+ 1 ,J).GE.O.AND.S I1(I- 1,J).LE.O) THEN

R=(ZINCR*ZINCR+XINCR*XINCR)/(2. *ZINCR)

IF(ABS(R).LT.RMIN) THEN
RMIN=ABS(R)

IS=1

Js=J

ENDIF

ENDIF

2 CONTINUE

I CONTINUE

C

YINCR=YOLD(2)-YOLD( 1)

DO 3 1 = 1,NX

ZLAST=Z(I,I)

DO 4 J=2,NY-1I
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ZINCR=Z(I,J)-ZLAST

ZLAST=Z(IJ)

IF(ABS(Z(I,Js-1)-ZLAST).GT.ABS(ZINCR))

& ZINCR=Z(I,J+ 1)-ZLAST

IF (S2(I,J+1).GE.O.AND.S2(IJ-1).LE.O) THEN

R=(ZINCR*ZLNCR+YINCR*YINCR)/(2.*ZINCR)

IF(ABS(R).LT.RMIN) THEN

RMIN=ABS(R)

PRINT*,RMIN

1S=4

JS=J

ENDIF

ENDIF

4 CONTINUE

3 CONTINUE

C

C OUTPUT (INTERACTIVE) THE MINIMUM AND GET THE DESIRED

C RADIUS OF CUTTER

C
PRINT*,'MIMIMUM RADIUS IS :,RMIN,'CM =',RMIN/2.54,'INCHES'

PRINT*,'AT ',IS,JS

PRINT*,'INPUT RADIUS TO BE USED (IN CM)'

READ(*,*) R

C

C FIND ThE CORRECTED GRID VALUES

C

RMA.XCHG=O0

DO 5J=I,NY

DO 6 I=1 ,NX

XNEW(Ij) = XOLD(I)+R*SIN(ATAN(S I (1,J)))
YNEW(Ij) = YOLD(J)+k*SIN(ATAN(S2(I,J)))

IF(RMAXCHG.LT.ABS(R-S1N(S I(I,J)))) RMAXCHG=R*SIN(S 1(IJ))

IF(RMAXCHG.LT.ABS(R*SIN(S2(I,J)))) RMAXCHG=R*SIN(,S2(I,J))
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6 CONTINUE

5 CONTINUE

C
PpJNT*,RMAXCHG,'MAX OFFSETr

C OUTPUT THE NEW GRID VALUES

C

OPEN (UNIT=5,FILE='[B943A3B.ROCHIER.DATAIISURFACEXS.DAT',

& RECORDTYPE='SEGMENTED',STATUS='OLD',FORM='UNFORMATI'ED')

C

WRITE(5) NX,NY

WRITE(5)((XNEW(I,J),I= 1,NX),J= 1,NY)

C

CLOSE(5)

OPEN (UNIT=5,FILE='[B943AJB.ROCIHER.DATAISURFACEYS.DAT',

& RECORDTYPE='SEGMENTED',STATUS='OLD',FORM='UNFORMATTED)

WRITE(S) NX,NY

WRITE(S)((YNEW(I,J),I= I,NX),J= 1 NY)

C

CLOSE(5)

STOP

END
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C SURFACE BLOCKER
C *****************************************************************

C PROGRAM CONVERTS A SINGLE SURFACE INTO OVERLAPPING BLOCKS
C FOR CONSTRUCTION IN PARTS

C

C

PARAMETER (NXMAX= 118,NYMAX= 118,NBLX=2,NBLY=2)

C
C *****************************************************************

C * ***INPUT PARAMETERS ARE: *

C * NX,NY = DIMENSIONS IN X AND Y DIRECTIONS *

C * NBLX, NBLY = NMBR OF BLOCKS WRITTEN IN EACH OF X & Y *

C * DIRECTIONS *
C ****************************************************************

C

C DECLARATIONS:

C

REAL Z(NXMAX,NYMAX),X(NXMAX,NYMAX),Y(NXMAX,NYMAX)

REAL ZBT(NXMAX/NBLX+4,NYMAX/NBLY+4)

REAL XBT(NXMAX/NBLX+4,NYMAX/NBLY+4)

REAL YBT(NXMAIVNBLX+4,NYMAX/NBLY+4)

CHARACTER* 14 FILENAMEI$[SURFACEZS.DAT'/

CHARACTER* 14 FILENAME2$[ SURFACEXS.DAT/

CHARACTER* 14 FILENAME3$fSURFACEYS.DAT'/

C
C *****************************************************************

C * ** MATRICES USED *

C * X,Y,Z = THE COORDINATES (IN CM) OF THE SURFACE *

C * XBT,YBT,ZBT ARE TEMPORARY BLOCKS OF Z *

C ****************************************************************

C

C INPUT THE SURFACE COORDINATES

C
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OPEN (UNIT=8,FILE='[B943AJB.ROCHER.DATAI'//FILENAME 1$,

& RECQRDTYPE='SEGMENTED',FORM='UNFORMA'ITED',STATUS='OLD')

READ (8) NX,NY

READ(8)((Z(I,J),I=1 ,NX),J=1 ,NY)

CLOSE(8)

C

OPEN (UNIT=8,FILE='IiB943AJB.ROCHLER.DATAV'/IFILENAME2$,

& RECORDTYPE='SEGMENTED',FORM='UNFORMATED',STATUS='OLD')

READ (8) IDUMMY,IDUMMY

CL0SE(8)

C

OPEN (UNIT=8,FLLE='[B943AJB .ROCHIER.DATAI'//FILENAME3$,

& RECORDTYPE='SEGMENTED',FORM='UNFORMA'1rED',STATUS='OLD')

READ (8) LDUMMYIDUMMY

READ(8)((Y(I,J),I= I,NX),J= I,NY)

CLOSE(8)

C

C FIND BLOCK DIMENSIONS

C

NXB = LNT(FLOAT(NX+1)/FLOAT(NBLX)+O.5)

NYB = INT(FLOAT(NY+ 1)/FLOAT(NBLY)4-.5)

C
PRIN*,'EACH OUTPUT:',NXB+2,'X,NYB+2

C LOOP TO SUBDIVIDE THF EXPANDED MATRICES FOR PROCESSING IN
C BLOCKS

C

DO IK = ,NBLY

DO 2 L= 1, NBLX

PRINT*,'CALLING', (K-1)*NBLY+L

CALL BLOCK(Z,X,Y,K,L,NX,NY,ZBT,XBT,YBTNXB,NYB)

C
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C SUBROUTINE BLOCK DIVIDES THE MATRTC'ES INTO SMALLER,

C OVERLAPPING SECTIONS

C

CALL OPENFILE (K,L,NBLX,NBLY)

C

C THE SUBROUTINE OPENFILE OPENS 3 OUTPUT FILES FOR

C UNFORMA=TD, SEGMENTED WRITING OF THE BLOCKS

C OF Z, X AND Y COORDINATES

C

WRITE(5) NXB+2,NYB+2

WRITE(5) ((ZBT(I,J),l=1,NXB+2),J=1 ,NYB+2)

CLOSE(5)

WRITE(8) NXB+2,NYB+2

WR1TE(8) ((XBT(JJ),I=1,NXB+2),J=1,NYB+2)

CLOSE(8)
WRITE(l 1) NXB+2,NYB+l

WRITE( 11) ((YBT(IJ),I= 1 ,NXB +2),J= 1 ,NY B+2)

CLOSE(1 1)
2 CONTINUE

1 CONTINUE

C

C

100 FORMAT(4(Fl 3.9,',',2X),F1 3.9)

120 FORMAT(215)

C

STOP

END

C

C

C ***********************SUBROUTINrES***********************

C

SUBROUTINE BLOCK (Z,X,Y,K,L,NX,,NY,ZT,XT,YT,NXB,NYB)

REAL Z(NX,NY),ZT(NXB+3,NYB+3)
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REAL X(NX,NY),XT(NXB+3,NYBi3)

C

PRINT*,NXB,NYB

ISTARTY = (K-1)*NYB-2

ISTARTX = (L-1)*NXB-2

IF(ISTARTX.LE.O) ISTARTX = 1

IF(TSTARTY.LE.O) ISTARTY = 1

DO I J= O,NYB+2

D02 1=O,NXB+2

I1I = ISTARTX+I

12 = ISTARTYeJ

IF(I1.LE.NX.AND.12.LE.NY) THEN

ZT(1+1J+1) = Z(11,12)

XT(I+1,J+1) = X(11,12)

YT(I+1,J+1) =Y(I1,12)

END IF

2 CONTINUE

I CONTINUE

RETURN

END

C

C

SUBROUTINE OPENF'ILE(K,L,NBLX,NBLY)

CHARACT7ER* 14 NAME 1 $,NAME2$,NAME3$

CHARACTER*2 BLOCKNUM$

NUMB = (K-.1)*NBLY + L

GOTO (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16), NUMB

PRINT*, 'FILE NUMBER OUT OF RANGE'

RETURN

1 BLOCKNUM$ ='O1'

GOTO 500

2 BLOCKNUM$ = '02'
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GOTO 500

3 BLOCKNUM$ = '03'

GOTO 500

4 BLOCKNUM$ = '04'

GOTO 500

5 BLOCKN UM$ = '05'
GOTO 500

6 BLOCKNUM$ = '06'

GOTO 500

7 BLOCKNUM$ = '07'

GOTO 500

8 BLOCKNUM$ = '08'

GOTO 500

9 BLOCKNUMS = '09'

GOTO 500

10 BLOCKNUM$ ='10'

GOTO 500

11 BLOCKNUM$ ='I1F

GOTO 500
12 BLOCKNUM$ ='12'

GOTO 500

13 BLOCKNUM$ ='13'

GOTO 500
14 BLOCKNUM$ = '14'

GOTO 500

15 BLOCKNUM$ ='15'

GOTO 500
16 I3LOCKNUM$ ='16'

GOTO 500
500 NAMEI1$ = -4ZBLOCK-j/BLOCKNUM$/f.DAT'

NAME2$ = 'X-BLOCK-j//BLOCK-NTUM$/f .DAT'

NAME3$ = 'Y-BLOCK-'ffBLOCKNUM$/f.DAT'

OPEN (UNIT=5,FILE='[ B943AJB.ROCHIER. DATAI INAMNE 1$,
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" RECORDTYPE'SEGMENTED',FOM'UNFORMATTED,
" STATUS='UNKNOWN')

OPEN(UNIT=8,FILE='[B943AJB.RQCfHER.DATA]'//NAME2$,
" RECORDTYPE='SEGMENTED',FORM='UNFORMNFITED',
" STATUS='UNKNOWN')

OPEN(UNIT=l 1 ,FILE=&[B943AJB.ROCIER.DATAI'/INAME3$,
" RECORDTYPE='SEGMENTED',FORM='UNFORMATTED',

" STATUS ='UNKNOWN')

RETURN
END
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C N/C COMMAND FORMATING PROGRAM
C

C PROGRAM CONVERTS SURFACE HEIGHT AND GRID INFORMATION

C TO COMMANDS FOR AN INCREMENTALLY CONTROLLED N//C MILL
C

PARAMETER(NYMAX=62,NXMAX=62)

C
C

C * **INPUT PARAMETERS** *

C * BLKNM$ = BLOCK NUMBER OF THE SURFACE TO BE *

C * FORMATTED *

C

C

C DECLARATIONS:

C

CHARACTER* 1 LIST(30)/30*' '/

CHARACTER* 1 OUTLINE(9000), CR113/, LF/ 10/
CHARACTER* 1 TEMP(8)

CHARACTER*2 BLKN$

INTEGER COUNT, TOTCHAR, TNUM, YCHG/I/

INTEGER GTOTAL

REAL Z(NYXMAX,NYMAX),X(NXMAX,NYMAX),Y(NXMAX,NYMAX)

C
C

C * ***VARIABLES*** *

C * Z,X,Y = SURFACE COORDINATES IN CM *

C

C
C ************************************************************

C * THE PROGRAM GENERATES INCREMETS AND OUTPUTS THEM *

C * UNTIL EITHER 1) A TAPE HAS 450 COMMANDS OR *

C * 2) A TAPE HAS 9000 CHARACTERS *

C * THE BLOCK IS CONTINUED AUTOMATICALLY ON T IE NEXT *
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C *TAPE*
C

C

C GET BLOCK NUMBER

C

PPAM[*,'FWLE NUMBER (Z-BLOCK_?.DAT)Y

ACCEPT*, BLKN$

C

C INPUT THE COORDINATES

C

OPEN (UNIT=8, FILE='[ B943AJB.ROCHIER.DATAIZBLOCK- //BLKNS/f'

& .DAT,RECORDTYPE='SEGMENTED',FORM='UN-FORMATTED'

& ,STATUS='OLD')

READ(8) NX,NY

PRINT*,NX,NY

READ(8)((Z(I,J),I= 1,NX),J= 1,NY)

CLOSE(8)

C

OPEN (UNIT=8, FILE=&[B943AJB.ROCHIER.DATAIXBLOCK-'//BLKNS//'

& .DAT,RECORDTYPE='SEGMENTED',FORM='UNFOPMAT-rED'

& ,STATUS='OLD')

C

READ(8) IDUMMYIDUMMY

READ(8)((X(I,J),I= I,NX),J= I,NY)

CLOSE(8)

C

OPEN (UNIT=8, FILE='[B943AJB.ROCHIER.DATA] YBLOCK-//B LKNl\S//'

& .DAT,RECORDTYPE='SEGMENTED',FORM='UNFORMATTED'

& ,STATUS='OLD-)

READ(8) IDUMMY,IDUMMY

READ(8)((Y(I,J),I= I,NX),J= 1,NY)
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CLOSE(8)

C

C CONVERT CENTIMETERS TO MILLIMETERS

C

DO 10 1 = 1,NX

DO 20 J = 1,NY

Z(IJ) = Z(IJ)* 10.
X(I,J) = X(I,J)* 10.

Y(Ir) Y(I,J)*10.

20 CONTINUE

10 CONTINUE

C

C SET UP INITIAL VALUES

C

COUNT = 0

GTOTAL=I

NM=O

ZLAST = 1.75*25.4

XLAST=X(1, 1)

YLAST=Y(1, 1)

NUMY = 0

TNUM = 1

CALL WRITBLOCK (TNUM,BLKN$)

C

C THE SUBROUTINE WRITBLOCK OPENS AN UNFORMATTED,

C SEGMENTED OUTPUT FILE, WHOSE NAME IS A FUNCTION

C OF THE BLOCK NUMBER (BLKN$) AND TAPE NUMBER (TNUM)

C

C CREATE THE TAPES

C

DO 7 NUMX=I,NX

6 NUMY-=NUMY+YCHG

IF (NUMY.GT.NY.OR.NUMY.EQ0) THEN
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YCHG=-YCHG

GOTO 7
ENDIF
LIST(1) ='N

TOTCHAR=1

COUNT = COUNT+i-I
CALL CONVRT(COUNT-i24.,TEMP, NUMUSED)

C
C THE SUBROUTINE CONVRT RETURNS ASCII CHARACTER
C REPRESENTATION OF THE INPUT NUMBER, EXCLUDING
C LEADING AND TRAILING ZEROS, IN THE ARRAY TEMP,
C NUMUSED IS A COUNT OF HOW MANY CHARACTERS ARE

C RETURNED
C

DO I J = ,NUMUSED
LIST(TOTCHAR4J) = TEMP(J)

1 CONTINUE
TOTCHAR = TOTCHAR+NUMUSED
GTOTAL = GTOTAL+NUMUSED

C
C

LIST(TOTCHAR) ='X

XINCR=X(NUMX,NUMY)-XLAST
XLAST=X(NUMX,NUMY)
CALL CONVRT(XINCR,TEMP,NUMUSED)
DO 2 i=I,NUMUSED

LIST(TOTCHAR+J) = TEMP(J)
2 CONTINUE

TOTCHAR = TOTCHAR+NUMUSED
GTOTAL = GTOTAL-iNUMUSED

C
C

LIST(TOTCHAR) ='Y
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YINCR=Y(NUMX,NUMY)-YLAST

YLAST=Y(NUMX,NUMY)
CALL CON VRT(YINCR,TEMP,NUMUS ED)
DO 4 J=l,NUMUSED

LIST(TOTCHAR+J) = TEMP(J)
4 CONTINUE

TOTCHAR = TOTCHAR+NUMUSED
GTOTAL = GTOTAL+NUMUSED

C
C

LIST(TOTCHAR) =T

ZINCR = Z(NUMX,NUMY) - ZLAST
MLAST = Z(NUMX,NUMY)

CALL CONVRT(ZINCR,TEMP,NUMUS ED)
DO 5 J =1,NUMUSED

LIST(TOTCHAR4J) = TEMP(J)
5 CONTINUE

TOTCHAR = TOTCHAR4NUMUSED
GTOTAL = OTOTAL + NUMUSED

C
DO 31 MM=1,TOTCHAR-1

OUTLINE(MM+NM)=LIST(MM)
31 CONTINUE

OUTLINE(MM+NM)=-CR
OUTLINE(MM+NMI-)=LF
NM = NM+MM+91
DO 30 J = 1,TOTCHAR

LIST(J)='

30 CONTINUE
C
C
50 IF (GTOTAL.GT.8960) THEN

PRINT*, TAPE #',TNUM,'FINISHED'
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PRINT*,'DUE TO TOTAL CHARACTERS',GTOTAL
TNUM = TNUM+1
WRITE(8,900)(OLJTINE(MM),MM= I,NM)

CLOSE(8)
CALL WRITBLOCK(TNUM,BLKN$)

TOTCHAR = I
GTOTAL =
NM=-O
COUNT = 0

ENDIF
IF (COUNT.GE.450) THEN

PRINT*,TAPE W', TNUM,' FINISHED'
PRINT*, 'DUE TO 450 POINTS DONE'
TNUM=TNUM+ 1
WRITE(8,900)(OUTLINE(MM),MM= 1 NM)

CLOSE(8)
CALL WRITBLOCK (TNUM,BLKN$)
NM=O
PRINT*, TOTAL CHARACTERS THIS TAPE:',GTOTAL
GTOTAL =

COUN7=0
ENDIF

GOTO 6
7 CONTINUE
C

PRINT*,'BLOCK ',BLKN$,' FINISHED AT POINT, NUMX-1,NUMY+YCHG
PRINT*,'WITH,GTOTAL,' TOTAL CHARACTERS'
PRINT*,'AND WITH',COUNT,' POINTS IN TAPE',TNUM
PRINT*
PRINT*,'TOTAL NUMBER OF TAPES IS ',NUM
WRITE(8,900)(OUThINE(MM),MM=1 ,NM)

CLOSE(8)
900 FORMAT(9000A 1)
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C

STOP

END
C
C
C *********************SBROUTINES**********************

C

SUBROUTINE WRITBLOCK (TNUM,B)

CHARACTER*2 B

INTEGER TNUM

CHARACTER* I FILENAME

C

GOTO (1,2,3,4,5,6,7,8,9,10),TNUM

1 FILENAME = 'B'//B//"T01.DAT'

GOTO 500
2 FILENAME = B'//B//'T02.DAT'

GOTO 500

3 FILENAME = 'B//B//T03.DAT'

GOTO 500

4 FILENAME = 'B'//B//T04.DAT'

GOTO 500

5 FILENAME = 'B//B//T05.DAT'

GOTO 500

6 FILENAME = 'B'//B//'T06.DAT'

GOTO 500
7 FILENAME = 'B'//B//"T07.DAT'

(jOTO 500

8 FILENAME = 'B//B//FT08.DAT'

GOTO 500

9 FILENAME = 'B'//B//'TO9.DAT'

GOTO 500

10 FILENAME = 'B'//B//'T1O.DAT'

GOTO 500
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500 OPEN (UNIT=8,FILE='TB943AJB.ROCHIER.TAPEFILEJ '/FILENAME,

*CARRIAGE CONTROL='NONE',RECL=1 2000,STATUS='UNKNOWN')

RETURN

END

C

C

C
SUBROUTINE CONVRT(VAL, TEMP, CNT)

INTEGER CNT, 11,12,13,14,15,16

CHARACTER* I TEMP(8), CHAR(10)

C

DO 123 1= 1,8

TEMP(I) ="'

123 CONTINUE

C
CNT= I

C

CHAR(1) = '0'

CHAR(2) = 'I'

CHAR(3) = '2'

CHAR(4) = '3'

CHAR(5) = '4'

CHAR(6) = '5'

CHAR(7) = '6'

CHAR(8) ='7

CHAR(9) = '8'

CI-AR(10) ='9'

C

TI =0

IF (VAL.NE.0) TI VAIABS(VAL)

C

VAL = A BS(VAL)

C
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11 = VALI100
12 = (VAL-1OO*11)/10

13 = (VAL-1OO*I11O*I2)

C
T2 = VAL-INT(VAL)
14='2*1O
15 = T12*100-14*10

16 = T2* 1000-14*100-I5* 10
C

IF(I1.NE.O) THIEN
TEMP(CNT) = CHAR(I1+1)
TEMP(CNT+1) = CHAR(12+1)
TEMP(CNT+2) = CHAR(13+1)

CNT = CNT+3
ENDIF

C
IF(i 1.EQ.O.AND.12.NE.O) THEN

TEMP(CNT) = CHAR(2+1I)
TEMP(CNT+-) = CHAR(13+1)
CNT = CNT+2

ENDIF
C

IF(11.EQ.O.AND.12.EQ.O.AND.13.NE.O) THEN
TEMP(CNT) = CHAR(13+1)
CNT = CNT+ I

ENDIF
C
C

IF (16.NE.O) THEN
TEMP(CNT)-
TEMP(CNT+1) = CHAR(14+1)
TEMP(CNT+2) = CHAR(15+1)

TEMP(CNTt3) = CH-AR(16+1)
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CNT CNT+ 4
ENDIF

IF (16.EQ.O.AND.15.NE.O) THEN
TEMP(CNT) ='.

TEMP(CNT+1) = CHAR(14+1)
TEMP(CNT+2) = CHAR(15+1)

CNT = CNT +3
ENDIF

C
IF (16.EQ.O.AND.15.EQ.O.AND.14.NE.O) THEN

TEMP(CNT) = .

TEMP(CNT+1) = CI-AR(14+1)

CNT = CNT+2
ENDIF
IF(T1.EQ.-lI.AND.CNT.NE.O) THEN

DO I J = CNT-i-1,2,-1
TEMP(J) = TEMP(J-1)

I CONTINUE
TEMP(1) ='-

CNT = CNT+1
ENDIF
IF (CNT.EQ.1) CNT=O
RETURN

END
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C
C STATISTICS GENERATOR
C

C PROGRAM GENERATES A SET OF STATISTICS FOR INPUT FILE

C

C

PARAMETER (NXMAX=598,NYMAX=598,NTSTPT=31)

C
C

C * ***INPUT PARAMETERS ARE: *

C * NX,NY = DIMENSIONS IN X AND Y DIRECTIONS *

C * NTSTPT = NUMBR OF TEST POINTS IN STATISTICAL PLOT *

C * GENERATION *

C

C

C DECLARATIONS:

C

REAL Z(NXMAX,NYMAX),STATS(2,2*NTSTPT)

REAL STDEV, AMEAN

C
C ***************************************************************

C * ** MATRICES USED *

C * Z = THE Z COORDINATES (IN CM) OF THE SURFACE *

C

C

C INPUT THE SURFACE

C
OPEN(UNIT=8,FILE='[B943AJB.ROCHIER.DATA] SURFACE ZS.DAT',

& RECORDTYPE='SEGMENTED',STATUS='OLD',FORM='UNFORMATED')

C
READ(8) NX,NY

PRINT*,NX,NY

READ(8)((Z(I,J),I= 1 ,NX),J= I,NY)
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CLOSE(8)

C

C FIND PROBABILITY DISTRIBUTION, STANDARD DEVIATION

C AND MEAN OF MATRIX Z

C

CALL STATISTICS(Z,NX,NY,STATSNTSTPT,STDEV,AMEAN)

C

C SUBROUTINE STATISTICS RETURNS THE PDF, OF Z IN ARRAY

C STATS, THE STANDARD DEVIATION AND MEAN ARE RETURNED

C IN STDEV AND AMEAN. SUBROUTINE STANDARD IS CALLED.

C

C OUTPUT THE STATISTICS

C

OPEN(UNIT=8,FILE='[B943AJB.ROCHIER.DATA] STATS .DAT',
* STATUS='UNKNOWN')

WRITE(8,140) STDEVAMEAN

WRITE(8, 110) (STATS( 1,J),STATS(2,J),J= 1,NTSTPT)

WRITE(8,120)

WRITE(8, 130) (STATS(2,J),J= 1,NTSTPT)

CLOSE(8)

C

C FIND THE AUTOCORRELATION IN THE X DIRECTION

C

PPJNT*,'AUTOCORRELATION'

PRINT*,' IN X'

CALL AUTOCORX(Z,NX,NY,2*NTSTPT,STATS)

C

C SUBROUTINE AUTOCORX RETURNS THE AVERAGE NORMALIZED

C AUTOCRRELATION OF 50 (VARIABLE) Y-CUTS' OF Z

C

C OUTPUT THE AUTOCORRELATION

C

OPEN(UNIT=8,FILE=IIB943AJB.ROCHIER.DATA]AUTOX.DAT',
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* STATUS='UNKNOWN')

WR1TE(8, 110) (STATS( 1 J),STATS (2,J),J=1 ,NTSTPT)
WRITE(8, 120)

WRITE(8, 130) (STATS(2,J),J= 1,NTSTPT)
CLOSE(8)

C
C FIND THE AUTOCORRELATION IN THE Y DIRECTION

PRINT*,' IN Y'
CALL AUTOCORY(Z,NX,NY,2*NTSTPT,STATS)

C
C SUBROUTINE AUTOCORY RETURNS THE AVERAGE NORMALIZED

C AUTOCRRELATION OF 50 (VARIABLE) 'X-CUTS'OF Z

C
C OUTPUT THE AUTOCORRELATION
C

OPEN(UNIT=8,FILE='[B943AJB.ROCHIER.DATAIAUTOY.DAT',
* STATU S='UNKNOWN')

WRITE(8, 110) (STATS( I,J),STATS(2,J),J= 1,NTSTPT)
WRITE(8,120)

WRITE(8,130) (STATS(2,J),J=1,NTSTPT)
CLOSE(8)

C
C
110 FORMAT(2(EI I.3,3X))
120 FORMAT(///)

130 FORMAT(EII.3)
140 FORMAT( STAND DEV =',F8.3,/,' MEAN =',F8.3,//)
C

STOP
END

C
C
C *********************SUBROUTnNES*****************
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C

SUBROUTINE STATISTICS (FNI1F,N2F,STATS,NP,STDEV,AMEAN)

REAL F(N IF,N2F),STATS(2,NP),DELTA,RNF

INTEGER INDX

CALL STANDARD(F,N I F,N2F,STDEV,AMEAN)

C

C STANlDARD RETURNS THE STANDARD DEVIATION AND MEAN

C OF MATRIX F.

C

T = 0.0

AMAX = -9999.0

AMIN = 9999.0

DO041 = I,NIF

DO 5J = 1,N2F

IF (AMAX.LT.F(I,J)) AMAX = F(I,J)

IF (AMIN.GT.F(I,J)) AMIN = F(I,J)

5 CONTINUE

4 CONTINUE

DELTA = (AMAX-AMIN )/(NP- 1)

RNF = 1.0/FLOAT(N1IF*N2F)

DO 6 J= 1,NP

STATS(2,J) = 0.0

STATS(1,j) =AMIN + (J-.5)*DELTA

6 CONTINUE

DO 21 = 1,NIF

DO 3 J= 1,N2F

INDX = INT((F(Ij)-AMIN)/DELTA+1)

IF(INDX.GE. 1 .AND.INDX.LE.NP) THEN

STATS(2,INDX) = STATS(2,INDX) + RNF/DELTA

T =T +RNF

ENDIF

3 CONTINUE

2 CONTINUE
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PPJIff*,'MAX=',AMAX

PRIT* ,'MIN=',AMIN

PRINT*,T0TAL PROB =',T

RETURN

END

C

C

SUBROUTINE STANDARD(Z,iNX,NY,STDEV,AMEAN)

REAL Z(NX,NY)

SUMSQ = 0.0
SUM = 0.0

NP = NX*NY

DO 1 J =1,NY

DO 2 1 = I,NX

SUMSQ = SUMSQ+(Z(I,J)*Z(I,J))

SUM =SUM + Z(I,J)

2 CONTINUE

ICONTINUE

SQSUM = SUM*SUM

RNP = FLOAT(NP)

STDEV = SQRT((SUMSQ*RNP-SQSUM)/((RNP- )*RiNP))

AMEAN =SUM/RNP

RETURN

END

C

C

SUBROUTINE AUTOCORX (Z,NX,NY,NTSTPT,STATS)

REAL Z(NX,NY), STATS(2,NTSTPT)

INTEGER NAVO

NAVG =50

IF (NY.LT.NAVG) NAVG=NY

DX =1I./FLOAT(NX-I1)

C
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DO I K = ,NTSTPT
STATS(1,K) = (K-1)*DX*100.
STATS(2,K) = 0.0

I CONTINUE
C

NDIV =0
DO5 L =1, NY, NY/NAVG

NDWV = NDIV+1
SMSQ =0.0
DO 2 K= 1,NX

SMSQ = SMSQ+Z(K,L)*Z(K,L)

2 CONTINUE
DO 4 J =1,NTSTPT

AUTO = 0.0
DO 3 1 = 1.NX-J+1

AUTO = AUTO + Z(I,L)*Z(I+J-1,L)

3 CONTINUE
STATS(2,J) = STATS(2,J) + AUTO/SMSQ

4 CONTINUE
5 CONTINUE
C

DO 6 K = 1,NTSTPT
STATS(2,K) =STATS(2,K)/NDIV

6 CONTINUE
C

RETURN

END
C
C

SUBROUTINE AUTOCORY (Z,NX,NY,NTSTPT,STATS)
REAL Z(NX,NY), STATS(2,NTSTPT)
NAVG =50
IF (NX.LT.NAVG) NAVG=NX
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DY =1./FLOAT(NY-1)

C
DO 1 K = 1,NTSTPT

STATS(1,K) = (K-1)*DY* 100.

STATS(2,K) = 0.0

I CONTINUE

C

NDIV=O0

DO 5 L= 1, NX, NX/NAVG

NDIV = NDIV+l

SMSQ = 0.0
DO 2K = 1,NY

SMSQ = SMSQ+Z(L,K)*Z(L,K)

2 CONTINUE

DO 4 J= 1,NTSTPT

AUTO = 0.0

DO 3 1 = 1,NY-J.-

AUTO = AUTO + Z(L,I)*Z(L,I+J-1)

3 CONTINUE

STATS(2,J) = STATS(2,J) + AUTO/SMSQ

4 CONTINUE

5 CONTINUE

C

DO 6 K = 1,NTSTPT

STATS(2,K) = STATS(2,K)/NDIV

6 CONTINUE

C

RETURN

END
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C

C SLOPE STATISTICS GENERATOR
C

C PROGRAM GENERATES THE STATISTICS OF THE SLOPES OF A RANDOM

C SURFACE

C

C

PARAMETER (NXMAX=598,NYMAX=598,NTSTPT=3 1)

C
C

C * ***INPUT PARAMETERS ARE: *

C * NX,NY = DIMENSIONS IN X AND Y DIRECTIONS *

C * NTSTPT = NUMBR OF TEST POINTS IN STATISTICAL PLOT *

C * GENERATION *

C

C

C DECLARATIONS:

C

REAL STATS(2,NTSTPT), S 1 (NXMAX,NYMAX)

REAL S2(NXMAX,NYMAX)

C

C
C * ** MATRICES USED *

C * S 1 = dz/dx FOR EACH GRID POINT *

C * S2 = dzldy AT EACH GRID POINT *

C

C

C INPUT THE SLOPES

C

OPEN(UNIT=8,FILE='[B943AJB.ROCHIER.DATA]DZDX.DAT',
* RECORDTYPE='SEGMENTED',FORM='UNFORMATTED',

* STATUS='UNKNOWN')

READ(8) NX,NY
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PRINT*,NX,NY
READ(8) ((S 1(I,J),I=l,NX),J=l,NY)

CLOSE(8)
C

OPEN(UNIT=8,F[LE='[B943AJB.ROCHIER.DATAIDZDY.DAT,
* RECORDTYPE='SEGMENTED,FORM='UNFORMATrED',
* STATUS='UNKNOWN)

READ(8) IDUMMY,IDUMMY
READ(8)((S2(IJ),I=1 ,NX),J=I ,NY)

CLOSE(8)
C
C

CALL SLOPESTAT(S1I,S2,NX,NY,STATS,NTSTPT)
C
C SUBROUTINE RETURNS THE DISTRIBUTION OF SLOPE ANGLES
C IN DB IN THE ARRAY STATS.
C
C OUTPUT THE STATISTICS

C
OPEN(UNIT=8,FILE='j B943AJB.ROCHIER.DATA IS LOPESTATS .DAT',

* STATUS='UNKNOWN')
WRITE (8,110) (STATS(1,J),STATS(2,j),J=1,NTSTPT)
WRITE(8,120)

WR1TE(8,l 30) (STATS(2,J),J=l ,NTSTPT)
CLOSE(8)

C
110 FORMAT(2(EI 1.3,3X))
120 FORMAT(///)
130 FORMAT(EI 11.3)
C

STOP
END

C
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C
C **********SBOTIE**********
C

SUBROUTINE SLOPESTAT(S 1,S2,NX,NY,STATS,NP)
REAL S I(NXNY), S2(NX,NY), STATS(2,NP), DELTA, RNF

INTEGER INDX
AMAX = -9999.0
CVRT = 57.29577951
T = 0.0

DO I J= 1,NY

DO02 1= lNx

IF(AMAX.LT.ABS(ATAN(S 1 ,J))AMAX=ABS(ATAN(S 1 (1,J)))
IF(AMAX .LT.AB S(ATIAN(S2(14J))))AMAX=AB S(ATAN(S2(I,J)))

2 CONTINUE

I CONTINUE
PRINT*MAX SLOPE =',AMAX*CVRT
DELTA =AMAX/(NP- 1)
DOSJ= 1,NP

STATS(2,J) = 0.0

STATS(Ij) = (J- I)*DELTA*CVRT

5 CONTINUE
RNF = 1.O/FLOAT(NX*NY*2)
DO03 J= 1,NY

DO 4 1= 1,NX

INDX = INT(ABS(ATAN(S I (I4J))/DELTA) + 1)
IF(INDX.GE. I.AND.INDX.LE.NP) THEN

STATS(2,INDX) = STATS(2,LNX)+RNF
T = T+RNF

ENDIF
INDX = INT(ABS(ATAN(S2(1IJ))IDELTA) + 1)
IF(INDX.GE. L AND. INDX.LE.NP) THEN

STATS(2,INDX) = STATS(2,INDX)+RNF

T = T+RNF
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ENDIF
4 CONTINUE

3 CONTINUE
AMAX=O.O

DO07 1= 1,NP
IF(AMAX.LT.STATS(2,I)) AMAX = STATS(2,I)

7 CONTINUE
DO06 1= 1,NP

IF (STATS(2,I).LE.O.O) STATS(2,I) = IE-8
STATS(2,I) = 10*LOG 10(STATS(2,I)/AMAX)

6 CONTINUE
PRINT*, TOTAL PROB =',T
RETURN

END
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BLOCK 1 MEASURED HEIGHTS (ALL VALUES IN CM)

x y z x Y Z

0.000 0.000 1.426 5.419 0.000 0.325

0.000 0.677 1.807 5.419 0.677 0.749

0.000 1.355 2.569 5.419 1.355 0.537

0.000 2.032 3.500 5.419 2.032 0.325

0.000 2.709 3.331 5.419 2.709 0.198

0.000 3.387 2.654 5.419 3.387 0.325

0.000 4.064 2.103 5.419 4.064 0.071

0.000 4.741 1.553 5.419 4.741 -0.691

0.000 5.419 1.341 5.419 5.419 -1.664

0.000 6.096 1.257 5.419 6.096 -2.257

0.000 6.773 1.045 5.419 6.773 -2.596

0.000 7.451 0.833 5.419 7.451 -2.680

0.000 8.128 0.833 5.419 8.128 -2.384

0.000 8.805 1.214 5.419 8.805 -1.622

0.000 9.483 1.680 5.419 9.483 -0.564

0.000 10.160 2.019 5.419 10.160 0.241

0.677 0.000 1.553 6.096 0.000 0.622

0.677 0.677 1.849 6.096 0.677 0.283

0.677 1.355 2.569 6.096 1.355 -0.183

0.677 2.032 2.950 6.096 2.032 -0.564

0.677 2.709 2.569 6.096 2.709 -0.648

0.677 3.387 1.934 6.096 3.387 -0.437

0.677 4.064 1.299 6.096 4.064 -0.394

0.677 4.741 0.876 6.096 4.741 -0.310

0.677 5.419 0.876 6.096 5.419 -1.664

0.677 6.096 1.172 6.096 6.096 -2.130

0.677 6.773 1.172 6.096 6.773 -2.342

0.677 7.451 0.918 6.096 7.451 -2.215
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0.677 8.128 0.876 6.096 8.128 -1.876
0.677 8.805 1.130 6.096 8.805 -0.902
0.677 9.483 1.722 6.096 9.483 -0.098
0.677 10.160 1.976 6.096 10.160 0.622
1.355 0.000 1.172 6.773 0.000 0.495
1.355 0.677 1.426 6.773 0.677 0.029
1.355 1.355 1.722 6.773 1.355 -0.394
1.355 2.032 1.976 6.773 2.032 -0.818
1.355 2.709 1.892 6.773 2.709 -0.987
1.355 3.387 1.468 6.773 3.387 -0,860
1.355 4.064 0.960 6.773 4.064 -0.648
1.355 4.741 0.664 6.773 4.741 -0.818
1.355 5.419 0.706 6.773 5.419 -1.283
1.355 6.096 1.045 6.773 6.096 -1.495
1.355 6.773 1.384 6.773 6.773 -1,495
1.355 7.451 1.214 6.773 7.451 -1.283
1.355 8.128 1.087 6.773 8.128 -0.860
1.355 8.805 1.553 6.773 8.805 -0.394
1.355 9.483 1.765 6.773 9.483 0.410
1.355 10.160 2.019 6.773 10.160 0,833
2.032 0.000 0.791 7.451 0.000 0.495
2.032 0.677 1.045 7.451 0.677 0.029
2.032 1.355 1.257 7.451 1.355 -0.352
2.032 2.032 1.553 7.451 2.032 -0.691
2.032 2.709 1.680 7.451 2.709 -0.013
2.032 3.387 1.511 7.451 3.387 0.071
2.032 4.064 1.172 7.451 4.064 0.114
2.032 4.741 0.918 7.451 4.741 0.071
2.032 5.419 0.876 7.451 5.419 -0.098
2.032 6.096 1.172 7.451 6.096 -0.945
2.032 6.773 1.384 7.451 6.773 -0.775
2.032 7.451 1.172 7.451 7.451 -0.564
2.032 8.128 1.172 7.451 8,128 -0.140
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2.032 8.805 1.299 7.451 8.805 0.325

2.032 9.483 1.384 7.451 9.483 0.833

2.032 10.160 1.468 7.451 10.160 1.045

2.709 0.000 0.410 8.128 0.000 0.749

2.709 0.677 0.706 8.128 0.677 0.622

2.709 1.355 0.918 8.128 1.355 0.410

2.709 2.032 1.003 8.128 2.032 0.241

2.709 2.709 1.172 8.128 2.709 0.029

2.709 3.387 1.384 8.128 3.387 -0.394

2.709 4.064 1.553 8.128 4.064 -0.606

2.709 4.741 1.384 8.128 4.741 -0.521

2.709 5.419 1.299 8.128 5.419 -0.479

2.709 6.096 1.257 8.128 6.096 -0.310

2.709 6.773 1.045 8.128 6.773 -0.225

2.709 7.451 0.495 8.128 7.451 0.071

2.709 8.128 0.537 8.128 8.128 0.495

2.709 8.805 0.579 8.128 8.805 1.045

2.709 9.483 0.664 8.128 9.483 1.257

2.709 10.160 0.622 8.128 10.160 1.426

3.387 0.000 0.029 8.805 0.000 1.087
3.387 0.677 0.579 8.805 0.677 1.257

3.387 1.355 0.833 8.805 1.355 1.468

3.387 2.032 1.087 8.805 2.032 1.130

3.387 2.709 1.003 8.805 2.709 0.749

3.387 3.387 1.087 8.805 3.387 0.156

3.387 4.064 1.341 8.805 4.064 -0.310

3.387 4.741 1.468 8.805 4.741 -0.437

3.387 5.419 1.172 8.805 5.419 -0.352
3.387 6.096 0.706 8.805 6.096 -0.140

3.387 6.773 -0.098 8.805 6.773 0.114

3.387 7.451 -0.564 8.805 7.451 0.410

3.387 8.128 -0.818 8.805 8.128 1.045

3.387 8.805 -0.564 8.805 8.805 1.722
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3.387 9.483 -0.394 8.805 9.483 2.019

3.387 10.160 -0.140 8.805 10.160 2.019

4.064 0.000 -0.140 9.483 0.000 1.341

4.064 0.677 0.791 9.483 0.677 1.807

4.064 1.355 1.087 9.483 1.355 1.680

4.064 2.032 0.918 9.483 2.032 1.341

4.064 2.709 0.918 9.483 2.709 1.722

4.064 3.387 1.045 9.483 3.387 0.325

4.064 4.064 1.087 9.483 4.064 -0.183

4.064 4.741 0.876 9.483 4.741 -0.225

4.064 5.419 0.283 9.483 5.419 -0.013

4.064 6.096 -0.606 9.483 6.096 0.198

4.064 6.773 -1.283 9.483 6.773 0.241

4.064 7.451 -1.834 9.483 7.451 0.198

4.064 8.128 -1.749 9.483 8.128 0.493

4.064 8.805 -1.453 9.483 8.805 1.468

4.064 9.483 -0.691 9.483 9.483 2.103

4.064 10.160 -0.183 9.483 10.160 2.315

4.741 0.000 -0.140 10.160 0.000 1.511

4.741 0.677 0.749 10.160 0.677 1.214

4.741 1.355 1.130 10.160 1.355 0.833

4.741 2.032 0.960 10.160 2.032 0.664

4.741 2.709 0.918 10.160 2.709 0.537

4.741 3.387 1.045 10.160 3.387 0.452

4.741 4.064 0.833 10.160 4.064 0.241

4.741 4.741 0.114 10.160 4.741 0.325

4.741 5.419 -0.606 10.160 5.419 0.325

4.741 6.096 -1.622 10.160 6.096 0.325

4.741 6.773 -2.215 10.160 6.773 0.071

4.741 7.451 -2.553 10.160 7.451 -0.225

4.741 8.128 -2.342 10.160 8.128 -0.098

4.741 8.805 -1.876 10.160 8.805 0.495

4.741 9.483 -0.818 10.160 9.483 1.468
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4.741 10.160 -0.013 10.160 10.160 1.892



BLOCK 2 MEASURED HEIGHTS (ALL VALUES IN CM)

x y z x Y Z

0.000 0.000 1.257 5.419 0.000 0.791

0.000 0.677 0.833 5.419 0.677 0.452

0.000 1.355 0.495 5.419 1.355 0.368

0.000 2.032 0.368 5.419 2.032 0.622

0.000 2.709 0.452 5.419 2.709 1.172

0.000 3.387 0.283 5.419 3.387 1.214

0.000 4.064 0.283 5.419 4.064 0.579

0.000 4.741 0.029 5.419 4.741 0.410

0.000 5.419 0.241 5.419 5.419 0.622

0.000 6.096 0.241 5.419 6.096 1.257

0.000 6.773 -0.056 5.419 6.773 1.511

0.000 7.451 -0.352 5.419 7.451 1.511

0.000 8.128 -0.183 5.419 8.128 1.299

0.000 8.805 0.452 5.419 8.805 0.918

0.000 9.483 1.172 5.419 9.483 0.664

0.000 10.160 1.680 5.419 10.160 0.833

0.677 0.000 1.045 6.096 0.000 0.960

0.677 0.677 0.368 6.096 0.677 0.622

0.677 1.355 0.071 6.096 1.355 0.579

0.677 2.032 0.114 6.096 2.032 1.045

0.677 2.709 0.325 6.096 2.709 1.553

0.677 3.387 0.706 6.096 3.387 1.341

0.677 4.064 0.622 6.096 4.064 0.452

0.677 4.741 0.495 6.096 4.741 0.156

0.677 5.419 0.410 6.096 5.419 0.325

0.677 6.096 0.410 6.096 6.096 0.918

0.677 6.773 -0.013 6.096 6.773 1.257

0.677 7.451 -0.479 6.096 7.451 1.087

0.677 8.128 -0.394 6.096 8.128 0.664

0.677 8.805 0.029 6.096 8.805 0.368
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0.677 9.483 0.749 6.096 9.483 0.283
0.677 10.160 1.341 6.096 10.160 0.495
1.355 0.000 0.960 6.773 0.000 1.511
1.355 0.677 -0.098 6.773 0.677 1.087
1.355 1.355 -0.394 6.773 1.355 1.045
1.355 2.032 -0.225 6.773 2.032 1.341
1.355 2.709 0.410 6.773 2.709 1.680
1.355 3.387 1.045 6.773 3.387 1.257
1.355 4.064 0.706 6.773 4.064 0.198
1.355 4.741 0.114 6.773 4.741 -0.521
1.355 5.419 -0.140 6.773 5.419 -0.691
1.355 6.096 -0.013 6.773 6.096 -0.352
1.355 6.773 -0.098 6.773 6.773 0.325
1.355 7.451 -0.479 6.773 7.451 0.749
1.355 8.128 -0.606 6.773 8.128 0.410
1.355 8.805 -0.437 6.773 8.805 0.071
1.355 9.483 0.071 6.773 9.483 -0.013
1.355 10.160 0.622 6.773 10.160 0.198
2.032 0.000 1.003 7.451 0.000 1.934
2.032 0.677 0.368 7.451 0.677 1.468
2.032 1.355 -0.437 7.451 1.355 1.299
2.032 2.032 -0.394 7.451 2.032 1.341
2.032 2.709 0.198 7.451 2.709 1.172
2.032 3.387 1.003 7.451 3.387 0.537
2.032 4.064 0.664 7.451 4.064 -0.818
2.032 4.741 -0.013 7.451 4.741 -1.622
2.032 5.419 -0.267 7.451 5.419 -1.791
2.032 6.096 -0.352 7.451 6.096 -1.283
2.032 6.773 -0.267 7.451 6.773 -0.437
2.032 7.451 -0.521 7.451 7.451 0.579
2.032 8.128 -0.945 7.451 8.128 0.368
2.032 8.805 -0.987 7.451 8.805 0.029
2.032 9.483 -0.648 7.451 9.483 0.029
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2.032 10.160 -0.310 7.451 10.160 0.198

2.709 0.000 1.299 8.128 0.000 1.765

2.709 0.677 0.029 8.128 0.677 1.511

2.709 1.355 -0.267 8.128 1.355 1.172

2.709 2.032 -0.437 8.128 2.032 1.003

2.709 2.709 -0.140 8.128 2.709 0.833

2.709 3.387 0.241 8.128 3.387 -0.098

2.709 4.064 0.537 8.128 4.064 -1.495

2.709 4.741 0.283 8.128 4.741 -2.130

2.709 5.419 -0.183 8.128 5.419 -2.172

2.709 6.096 -0.352 8.128 6.096 -1.707

2.709 6.773 -0.394 8.128 6.773 -0.310

2.709 7.451 -0.521 8.128 7.451 0.706

2.709 8.128 -1.072 8.128 8.128 0.495

2.709 8.805 -1.241 8.128 8.805 0.198

2.709 9.483 -1.114 8.128 9.483 0.114

2.709 10.160 -0.733 8.128 10.160 0.241

3.387 0.000 1.172 8.805 0.000 1.172

3.387 0.677 0.325 8.805 0.677 1.003

3.387 1.355 -0.183 8.805 1.355 0.495

3.387 2.032 -0.267 8.805 2.032 0.156

3.387 2.709 -0.098 8.805 2.709 -0.098

3.387 3.387 0.283 8.805 3.387 -0.564

3.387 4.064 0.410 8.805 4.064 -1.664

3.387 4.741 0.325 8.805 4.741 -2.257

3.387 5.419 0.198 8.805 5.419 -2.215

3.387 6.096 0.071 8.805 6.096 -1.707

3.387 6.773 0.071 8.805 6.773 -0.648

3.387 7.451 -0.140 8.805 7.451 0.833

3.387 8.128 -0.648 8.805 8.128 0.706

3.387 8.805 -0.945 8.805 8.805 0.283
3.387 9.483 -0.987 8.805 9.483 0.198

3.387 10.160 -0.775 8.805 10.160 0.198
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4.064 0.000 0.960 9.483 0.000 0.749
4.064 0.677 0.622 9.483 0.677 0.664
4.064 1.355 0.241 9.483 1.355 0.452

4.064 2.032 0.071 9.483 2.032 0.029

4.064 2.709 0.198 9.483 2.709 -0.521
4.064 3.387 0.325 9.483 3.387 -0.648
4.064 4.064 0.283 9.483 4.064 -0.183
4.064 4.741 0.241 9.483 4.741 -2.130
4.064 5.419 0.368 9.483 5.419 -2.130
4.064 6.096 0.622 9.483 6.096 -2.045

4.064 6.773 0.960 9.483 6.773 -1.368
4.064 7.451 0.833 9.483 7.451 -0.394

4.064 8.128 0.368 9.483 8.128 0.325
4.064 8.805 -0.225 9.483 8.805 0.114
4.064 9.483 -0.183 9.483 9.483 -0.183

4.064 10.160 -0.013 9.483 10.160 -0.267

4.741 0.000 0.83 4.741 5.419 0.325

4.741 0.677 0.622 4.741 6.096 0.833
4.741 1.355 0.410 4.741 6.773 1.468

4.741 2.032 0.452 4.741 7.451 1.553

4.741 2.709 0.706 4.741 8.128 1.130

4.741 3.387 0.749 4.741 8.805 0.706

4.741 4.064 0.452 4.741 9.483 0.537

4.741 4.741 0.241 4.741 10.160 0.537



APPENDIX C

POLYURETHANE TEST DATA [44]
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